AFIT/DS/ENG /96-02

A Generic Intelligent Architecture for

Computer-Aided Training of Procedural Knowledge

DISSERTATION
Freeman Alexander Kilpatrick, Jr
Captain, USAF

AFIT/DS/ENG /96-02

19970317 025

| DTIC QUALITY TNEETUTED 8

Approved for public release; distribution unlimited

AFIT/DS/ENG/96-02

A Generic Intelligent Architecture for
Computer-Aided Training of Procedural Knowledge

DISSERTATION

Presented to the Faculty of the Graduate School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

Freeman Alexander Kilpatrick, Jr, B.S.E.E., M.S.S.M., M.S.C.E.
Captain, USAF

March 6, 1996

Approved for public release; distribution unlimited

AFIT/DS/ENG/96-02

A Generic Intelligent Architecture for
Computer-Aided Training of Procedural Knowledge

Freeman A. Kilpatrick Jr., B.S.E.E.,, M.S.S.\M, M.S.C.E.
Captain, USAF
Approved:

(’X/—\g‘{lm ({Llra—/L ___:___’Mt__(j‘
nsch, 1\Xajor, USAF Date
Chalrman Advisory Commlt/lee

o d o

23 b

Eugene ntos Jr. / Date
Member, Advisory Commiftee
7.)
Susann M. Mathews ' Date
Mxeglber, Adv1sory Qommlttee
\-'\u \—((, \\ o (‘/*‘ ‘:/ . L it G &
Jack A\ Jackson Jr., L Col, USAF) Date

Mem Advxs yKC ittee

Cof™

) ﬁ W 2 L7 ;/Z;G 9(2
Kim 8. Campbell - Date

Member, Advisory Committee

%&W&M— S Mer G

Kenneth W. Bauer, Lt Col, USAF Date
Dean’s Representative

Yy

Robert A. Calico, Jr.
Dean, Graduate School of Engineering

Preface

This dissertation is dedicated to my sons, Adam and Sanders, both of whom were born
during my Ph.D. program. Watching the miracle of their developing intelligence reminded

me daily that machine intelligence is but a pale shadow of the real thing

To pursue a Ph.D. requires at least a small degree of insanity. Fortunately, there
are many people that a PhD candidate works with that help keep this small measure of
insanity from becoming a full fledged psychosis. First of all, I would like to express my
sincere appreciation to my advisor, Maj Gregg Gunsch, whom I have worked with for
almost five years. Our debates, both technical and philosophical were greatly appreciated
and will be sorely missed. Also, his ability to instantly see the holes in new ideas and
fields both infuriated and amazed me. I would also like to thank my other committee
members: Dr. Gene Santos for a (mostly failed) attempt to keep me from becoming too
scruffy, and for reminiscing about the classic video games of our youth; Dr. Kim Campbell
for her humor and relentless style suggestions; Dr. Susann Mathews for her educational
perspective and general sanity-preserving advice. Additionally, I would like to thank my

sponsor, LtCol Nancy Crowley for her support of computer resources and TDY funding.

Although the committee is a major driving factor for the successful completion of
a Ph.D., there are many “unofficial” contributors as well. I would like to express my
appreciation to Doug Dyer, my “upperclassman,” for his encouragement and pragmatic
advice throughout the entire program. Also, Dennis Montera and Steve Forsythe provided
some welcome lunchtime diversions to give my mind a break from the rigors of research.
Bill Wood and Pete Collins provided some mostly bad exchanges of music in attempt to
broaden my sense of culture, and a daily trek to the vital AFIT bookstore for caffeine
supplements. Also, my fellow M.S. extendees: Frank Young, Bruce Anderson and Larry

Merkle were a welcome source of commiseration.

Finally, and most importantly I have to express my deepest appreciation to my
family. My parents, Freeman and Sara Kilpatrick have given me unfailing support, love and
encouragement through twenty-five straight years of school. My wonderful wife, Donna,

and my sons Adam and Sanders have contributed to my success more than they can ever

iii

know. They were my bedrock of reality; their love and support allowed me to keep a

healthy perspective, and made the completion of the degree meaningful. I couldn’t have

done it without them.

iv

Freeman Alexander Kilpatrick, Jr

Table of Contents

Preface e e
List of Figures 0 i e e
Abstract L e
I Introduction.
11 Background e

1.2 Overview i e e

121 TheProblem

1.2.2 Motivation

123 Approach

1.3 Scope e

1.4 Objectives

1.5 Research Structure.

II. Background
2.1 History o o e

2.2 Intelligent Tutoring Systems

221 The Expert Module

2.2.2 The Student Model

223 TheTutorModule

2.3 Related Concepts,

2.3.1 Shallow vs. Deep Knowledge

232 Simulations o e

2.3.3 Machine Learning

2.4 Educational Theory

2.4.1 Learning Theory
2.4.2 Operator Decision-Making Theory
2.4.3 Training Theory
2.4.4 Practice Theory
2.5 RelatedResearch
251 ACQUIRE-ITS

2.5.2 ITSIE - Intelligent Training Systems in Industrial Envi-

TONINENES v v v v v v e v vt e e e e e e e e e e e e e e

2.5.3 NASA’s Intelligent Computer-Aided Training Authoring

Environment

2.5.4 Intelligent Simulation Training System (ISTS)

ITI. Architecture i e
3.1 Knowledge Requirements
3.1.1 Training Simulation

3.1.2 Shallow Domain Knowledge

3.1.3 Summaryo h e e e e e e e e e e e e

3.2 Architecture o e
321 Overviewo i e

3.22 The Simulation L

3.2.3 The Domain Expert Knowledge Base

3.2.4 Knowledge Acquisition Module

325 ControlModule.

326 TutorModule.............. ...,

3.2.7 Student Model

328 ExpertModule

3.2.9 Scenario Library,

3.3 Summary e e e e e e e e e e

vi

Page
14
16
19
21
22

22

23

23
24

25
26
28
29
31
31
32
33
36
36
37
37
38
38
38
38

Iv.

V.

Knowledge Acquisition oo it i i e e
4.1 Accessing Internal Representations
4.1.1 Knowledge Base Internals

4.1.2 Simulation Imternals

4.1.3 Summaryo e e e e e e e e e e

4.2 Machine Learning
4.2.1 An DNlustration of The Problem

42.2 Induction,

423 Summaryt

4.3 Scenario Exploration.,
431 TheProblem

4.4 Action-Based Exploration
4.4.1 Simulation Graphs,

4.4.2 The Exploration Process.

443 Summary e e e e e e

4.5 Consistency Checking
4.6 Curriculum Extraction
4.7 Summary e e e e e e e e e e e e
Implementation Issues e
5.1 Introduction,
5.2 Prototype Architecture,
521 KnowledgeBase

5.2.2 Simulation

5.2.3 SCIUS Prototype Framework

524 Summary i it e e e e e e e e e

5.3 SimulationIssues.,
531 Imterface.,

vil

43
44
44
44
47
56
56
56
57
59
61
64
64
66
67

68
68
70
71
72
73
74
74
74

5.3.2 Exploration Combinatorics

54 Knowledge BaseIssues
541 Imterface.

54.2 Timing

5.5 InductionIssues
5.5.1 Numberof Examples.

5.5.2 Induction Behavior

553 Bias L o

5.6 Limitations of the Model
5.6.1 Domain-Specific Knowledge Requirements

5.6.2 Shallow Knowledge

5.6.3 Knowledge Base Paradigms

BT Summary e e e e e e e e e e e e
VI. Conclusions & Recommendations
6.1 Summary e e e e e e e e e e e e e
6.2 Objectives e
6.3 Contributions. o .
6.3.1 Authoring Systems

6.3.2 Generic Training System Model

6.3.3 Automatic Knowledge Acquisition

6.3.4 Reverse Engineering of Knowledge Bases

6.4 Recommendations for Future Work
6.4.1 Interactive Simulations

6.4.2 Induction Tuning

6.4.3 Real-world Testing ‘

6.4.4 Complete ITS Development '
6.5 Overall Conclusions

85
89
89
89
90
91
92

93
93
94
96
96
96
96
96
97
97
98
98
99
99

Appendix A.
Al
A2

Appendix B.
B.1
B.2

B.3

Definitions 0 i i e e e e e 100
Simulation e e e e 100
Knowledge Base 100
Prototype Algorithms, 101
Scenario Exploration, 101
Induction e . 103
Code Availability o 103
..................................... 105
..................................... 109

ix

Figure

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

23.

24.

List of Figures

Page
Standard ITSmodel 2
Knowledge communication hierarchy 5
Shallow vs. Deep Knowledge 12
Operator Decision-Making Schematic 17
Component Display Theory 20
Knowledge Separation 25
Knowledge vs. Training effectiveness 26
Knowledge vs. System Cost 27
SCIUS Architecture i e 32
An Abstract Simulation 34
Hypothetical Simulation State Graph 35
An Abstract Knowledge Base 36
Rule Induction Flow 50
Knowledge Base Flattening 51
State vs. Action Based Exploration 58
Example Simulation Graph 59
Expert Path Deviations 61
Consistency Checking i e 65
Simulation Interface. 72
Simulation Control Interface 75
Expert Simulation Exploration 77
1 Generation, 1 Branch Exploration 78
Simulation Exploration With (a) 1 Generation, 10 Branch, (b) 1 Generation,
100 Branch e 79
Simulation Exploration With (a) 10 Generation, 1 Branch, (b) 100 Genera-
tion, 1 Branch e 80

Figure Page
- 25. 2 Generation, 5 Branch Exploration 81
26. Ideal Timing o o v i i i 82
27. Imduction AccuraCy v v i i i i e e e e e e e e e 84

AFIT/DS/ENG/96-02

Abstract

Intelligent Tutoring System (ITS) development is a knowledge-intensive task, suffer-
ing from the same knowledge acquisition bottleneck that plagues most Artificial Intelligence
(AI) systems. This research presents an architecture that requires knowledge only in the
form of a shallow knowledge base and a simulation to produce a training system. The
knowledge base provides the basic procedural knowledge while the simulation provides
context. The remainder of the knowledge required for training is learned through the in-
teraction of these components in a state-space scenario exploration process and inductive
machine learning. These knowledge components are used only at the interface level, al-
lowing the internal representation to take any form that meets the interface requirements.
A prototype of this architecture is implemented as a proof-of-concept to illustrate the

viability of the key knowledge acquisition techniques.

A Generic Intelligent Architecture for

Computer-Aided Training of Procedural Knowledge

1. Introduction

If you don’t have a gadget called a teaching machine, don’t get one. Don’t buy
one; don’t borrow one; don’t steal one. If you have such a gadget, get rid of
it. Don’t give it away, for someone else might use it. This is a most practical
rule, based on empirical facts from considerable observation. If you begin with
a device of any kind, you will try to develop the teaching program to fit that
device. — Gilbert, 1960 (18).

The impact of the computer upon society has been considerable, but the impact upon
the educational process has been underwhelming, to say the least. While a print shop owner
from the 1800s would be bewildered by the desktop publishing machines of today, a teacher
from the 1800s would (mostly) feel right at home in a modern classroom. The main reason
teachers have been safe from the computer invasion is that the job of teaching, like many
human activities, is much more complex than it seems. The first computer-based teaching
systems were little more than electronic workbooks — a pale shadow of the human teacher’s
capability. Modern research into Artificial Intelligence (AI) holds promise to close this gap
somewhat, but at a significant cost. This research is concerned with the task of making

intelligent computer-based training systems easier and less costly to build.

1.1 Background

The field of Intelligent Tutoring Systems (ITS) is one of the newer fields of Artificial
Intelligence (AI), and grew out of a general dissatisfaction with the more conventional
Computer-Aided Instruction (CAI) learning environments. In contrast to a CAI system,
an ITS is generative and adaptive, both in content and form to the individual needs of
each pupil; this provides a learning experience that is closer to that experienced with a
human teacher. The classic ITS model involves four distinct components: an ezpert module

to provide domain-specific knowledge, a tutor module to provide pedagogical knowledge,

|

: Student
} Mode
|

|

|

|

State Update } Student State
Interface

Guidance | Module

Answers Problems
Details

yQueries

Expert
Module

e e s o ——— ——— s ————— = —— s —— —— — —

|
|

|

I

l

|

|

|

|

|

|

P]
Pedagogy| Tutor :
!

|

|

|

|

I

|

|

|

|

|

|

Figure 1. Standard ITS model

a student model to provide some estimate of the student’s knowledge state, and an ap-
propriate human-computer interface to both the domain and instructional components of
the system. These components are shown in Figure 1. Researchers have concentrated on
various aspects of the basic architecture, typically towards increased complexity — com-
plex student models, innovative pedagogical techniques, large libraries of domain concepts
and misconceptions, and adaptive interfaces. While researchers have made some inter-
esting discoveries in understanding students’ thought processes and developing innovative

instructional techniques, ITSs are still not used in mainstream education.

1.2 QOwerview

The high-level goal for this research is to make the process of building intelligent
training systems less costly. This section describes the problem this research addresses,

followed by a motivation for, and description of a unique approach to the problem.

1.2.1 The Problem. Anderson (3) states that traditional CAI development takes
200 hours per hour of instruction, and ITS development could be an order of magnitude

greater; Orey (29) describes another estimate of 500 hours development per hour of instruc-

tion. ITS development, like most Al endeavors, is a knowledge-intensive process, requiring
a significant amount of engineering to encode knowledge into a form usable by the ITS. This
process can be quite complex, expensive and time-consuming; this knowledge-acquisition

bottleneck is one of the major hurdles for real-world Al systems.

1.2.2 Motivation. The motivation for this research came from a search of the
available literature involving Intelligent Tutoring Systerhs (ITS). Many of the researchers
in the field came from primarily educational backgrounds, and as such, were primarily
concerned with pedagogical issues. For example, Shute (43) cites the great ITS debates of
the 1990s as:

1. How much learner control should be allowed?
2. Should learning take place individually or collaboratively?
3. Is learning situated, unique, or symbolic?

4. Does virtual reality uniquely contribute to learning?

Many of the systems presented in the research are quite complex, involving such
concepts as cognitively-based student models, libraries of student misconceptions, natural
language interfaces, and generative buggy procedures. Many of the researchers appeared
to be more concerned with how much capability can be built into an ITS, instead of how

we can make building ITSs feasible in a real-world environment with economic constraints.

Thus, instead of “pushing the frontier” of technology for intelligent tutoring systems,
I decided to attack the other end of the spectrum and find out how little could be built
into an ITS and still have it behave intelligently. Knowledge is power, but knowledge is
also expensive. Feigenbaum’s knowledge acquisition bottleneck (15) plagues AI systems

and can only be attacked by reducing the knowledge engineering required for a system.

1.2.3 Approach. This research concentrates on training domains, involving the
communication of procedural knowledge to operators of complex dynamic systems. The
goal of this research is to develop a domain-independent architecture for an intelligent
training system that minimizes the amount of domain knowledge engineering required

for a complete system, and takes advantage of pre-existing knowledge, if available. The

domain knowledge in the architecture is isolated in two components: a simulation of the
domain and a knowledge base that is required to contain only shallow knowledge about

the operator’s job.

However, these two components alone, even in a generic architecture, are not suffi-
cient for intelligent training. Instead, the remainder of the knowledge required for training
is developed automatically through the interaction of these components. More specifically,
the scenarios required for student practice are discovered through an automated state-
space search process. The knowledge base provides the what for a particular scenario, but
machine learning induction develops the why for classes of scenarios, providing a means
for generalized training, and as information for developing an automated baseline cur-
riculum. Additionally, these components are accessed only at the interface level, allowing
the internal representation of these components to take any form that meets the interface
specification. This allows enormous flexibility in the development of the domain knowledge

components, as well as a means for utilizing pre-existing knowledge where available.

In brief, a simulation provides context without knowledge; a knowledge base provides
knowledge without context. This research exploits the interaction of these components to
provide combined knowledge that is more powerful than the union of these components
in isolation. This allows the development of an intelligent training approach that requires
less knowledge than other approaches, and represents a significant savings in terms of

development and maintenance time and effort.

1.3 Scope

This research is applicable to domains involving training of procedural knowledge to
adults, as shown in Figure 2. Because this research exploits certain characteristics of this
type of knowledge communication, it may not be particularly applicable to other domains,

primarily because the other domains have significantly different learning objectives.

Furthermore, this research concentrates on the knowledge acquisition problem of
intelligent tutoring systems, specifically acquiring a level of domain knowledge sufficient

for training under a training model described in Chapter 2. Knowledge acquisition is a

Knowledge
Communication

Adult Child

Training Education

I |

Procedural Declarative Other

Figure 2. Knowledge communication hierarchy

key factor in the efficiency of ITS development (26). In the development of ITSs, the
next step after acquiring knowledge would be to implement the presentation/instructional
interaction component of the system. This task can be challenging from a pedagogical
perspective, but is mainly labor-intensive from an implementation perspective. For the
same reasons, the emphasis in the ITS field has been away from full system development,
and has instead concentrated on the key pieces of system development (43). This effort is
intended to be a foundation research effort, exploring the feasibility of a unique approach

to acquiring knowledge for intelligent training systems.

1.4 Objectives

Develop an architecture for a training system that uses only a simulation and knowl-

edge base for domain knowledge.

Develop an approach to automatically generate scenarios for training.

Develop a technique to isolate the key feature knowledge from a scenario.

Determine the knowledge and interface requirements for a simulation and knowledge

base in a generic architecture.

These objectives are parts of an overall vision, but they are largely independent
in potential applicability. For example, the automatic generation of scenarios may be

applicable to other ITS research efforts, whether or not they use my overall approach.

1.5 Research Structure

This study first develops a methodology and architecture for a generic training sys-
tem, followed by the development of algorithms and techniques for automatic knowledge
acquisition of additional domain-dependent training knowledge. The knowledge-acquisition
components of the architecture are then implemented as a prototype on a PC-compatible
workstation under Common Lisp. Finally, the architecture is demonstrated in a specific

domain as a proof of concept.

II. Background

This chapter discusses the relevant concepts and issues in the field of Intelligent
Tutoring Systems (ITS), as well as some related fields that apply to my research, followed

by a discussion of related research efforts in the field.

2.1 History

The field of computer-aided instruction (CAI) began in the early 1950s as a realization
of the “programmed learning” movement of the period. The philosophy of instruction was
based upon Skinner’s (47, 46, 20) behaviorist theories, and the general concept was to
reduce a domain to primitive chunks which could be taught to a pupil individually. Each
chunk was a prerequisite for other chunks, and had prerequisites itself, forming a directed
graph of subject material. This strict linear progression through chunks forced the student

to follow the structure imposed by the author of the tutorial (56, 13).

In the 1960s, it was realized that student feedback could provide some additional
control to a specific student’s progression through the material. At first, this was simply
implemented as a set of test questions at the end of each subject chunk, controlling ad-
vancement to the next chunk. If the test questions were not passed, then the student could
be sent back to review the material again, or the student could branch to some form of
corrective feedback. At this time, the branching was explicitly controlled by the program’s
author, and student responses outside the author’s pre-programmed branching scheme
were not possible. Although these systems were more adaptable than early systems, they

still forced the student to follow a strict, planned learning progression.

In the 1970s, “authoring languages” were developed to allow non-programmers to
develop CAI systems. An authoring language is essentially a domain-independent tem-
plate that controls the structure of the CAI system; the author only has to provide the
domain subject material. While authoring systems make the development of CAI systems
easier, the trade-off is that they significantly limit the flexibility of the instruction. The
tutorial author is forced to follow the authoring system’s template of how a generic lesson

should be structured. Also in the 1970s, the first generative tutorial systems were devel-

oped. In some simple domains such as math, the system could generate its own problems
(addition, subtraction, etc.), solve them, and adjust the difficulty to match the student’s
ability (mostly by creating bigger or smaller arithmetic problems). Typing tutors were also
developed that could adapt the typing drills to concentrate on letters that were causing
the student trouble.

Basic CAI systems have obtained significant gains over the programmed learning ma-
chines of the 1950s, but they are certainly no match for a human teacher. In CAI systems
the computer is acting as a presentation device, even though sometimes the presentation
can be made somewhat complex by means of the pre-defined branching strategies already
discussed (13). The essential problem is that CAI systems operate under severely impov-
erished knowledge; “none of them have any human-like knowledge of the domains which
they are teaching; nor can they answer serious questions of the students as to ‘why’ and

‘how’ the task is performed” (56).

~ The field of Intelligent Tutoring Systems (ITS) began as an attempt to deal with the
shortcomings of basic CAI systems. It was felt that the growing field of AI could provide
the CAI systems with some human-like reasoning abilities, thus greatly increasing the
effectiveness of the instruction. In contrast to CAI, an ITS is generative and adaptive, both
in content and form to the individual needs of each pupil. Also, the range of adaptations
is not explicitly planned in advance, as in a simple branching CAI system; the adaptation

progresses as the interaction with the student progresses (13).

Computers have long held the promise of revolutionizing education. The idea of
an infinitely patient, highly knowledgeable, one-on-one private computer tutor has often
been touted as the future of education. However, after forty years of research involving
computers and education and development of over 10,000 pieces of educational software,
traditional methods of teaching are still dominant. Because teaching is such a dynamic
and knowledge-intensive process, Al may hold the only potential for realizing any of the

long-term goals of computer-based instruction (3).

2.2 Intelligent Tutoring Systems

There are different viewpoints on the precise components of an ITS, but one widely
accepted definition is by Wenger. Wenger’s three main components of an ITS are: an expert
module that represents domain expertise, a student model that represents the student’s
knowledge state and expertise, and a tutor, or pedagogical module that structures the

interaction between the tutor and the student (54).

2.2.1 The Ezpert Module. The expert module serves two primary functions.
First, it acts as a source for knowledge, which includes generating intelligent responses to
student queries as well as intelligent tasks and questions for the student. Second, it must
act as a standard for evaluating the student’s knowledge and performance; it must be able
to solve problems in the same context as the student, so their respective answers can be

compared (54).

Anderson defines three basic types of expert modules (2). The first is the black
boz model, that represents domain knowledge in a manner that is completely different
from human reasoning. For example, SOPHIE reasons about electronic circuits using
the SPICE simulator and mathematical relaxation (6). Essentially, it uses a numerical
process to achieve results similar to what humans achieve with a symbolic process (2). The
second type of expert module is the classic expert system, which may or may not closely
represent human reasoning processes, (Anderson calls these glass boz systems). GUIDON
was a system designed by Clancey (9) that made extensive use of the classic expert system
MYCIN (41). The third type of expert module is the higher level cognitive modeltype. This
type of module is essentially a simulation of some form of human reasoning. The knowledge
in these systems can take many forms such as qualitative simulation (21), semantic nets

(7), and Socratic dialogue (49).

2.2.2 The Student Model. Intelligent communication requires some understand-
ing of the recipient (54). Therefore, an ITS must have some understanding of the student’s
current state of knowledge. The process of inferring a student model is often referred to

as diagnostis because the process is similar to medical diagnosis; an ITS uncovers a hidden

cognitive (as opposed to physiological) state from observable behavior (52). Basically, a
student model is required by the ITS to organize and guide the student’s learning process

(54).

VanLehn describes a three-dimensional space of student models based upon band-
width, target knowledge type and the differences between the student and expert (52). The
first dimension, bandwidth, is concerned with the amount of the student’s activity that is
available to the model. Anderson’s LISP tutor (35) was an example of a high bandwidth
model that contained a detailed cognitive model, representing a sequence of student mental
states (in Anderson’s view). In Anderson’s tutor, the student was required to pick menu
selections to represent goals, strategies and code fragments to use (52). On the other hand,
PROUST was a low bandwidth system designed to teach Pascal programming. PROUST
only used the final program submitted to the compiler as a source of knowledge for infer-
ring a student model (52, 54). VanLehn’s second dimension, knowledge type, deals with
whether the knowledge to be taught is procedural or declarative (procedural and declara-
tive knowledge are discussed in Section 2.4.1). If the knowledge is procedural, it may be
flat or hierarchical. The type of knowledge affects the modeling process; most systems use
a mixture of procedural and declarative, even when the domain is primarily of one type.
The third dimension involves how the difference between the student module and the ex-
pert module is represented. Some systems simply represent the student as a subset of the
expert; this type of model is referred to as an overlay model. These systems find missing
conceptions, or items of knowledge the expert has that the student does not. Other types
of systems find misconceptions, or items of knowledge the student has that the expert does
not. In these systems, the misconceptions are often represented as malformed expert rules
(malrules) or “buggy” rules. Ideally, such a system will have a large number of bug rules
to cover most of the potential student misconceptions. These buggy rules can be obtained
from a pre-compiled bug library or generated through some type of learning theory (52, 5).
Systems which use this model must be able to match the student’s actions to a buggy
procedure in the bug library, or be able to generate a buggy procedure that gives the same

incorrect result as the student.

10

2.2.3 The Tutor Module. The purpose of the tutor module is to define the peda-
gogical strategy, or the organization, sequencing and form of the tutor-student interaction.

Essentially, the tutor module embodies “knowledge about communicating knowledge” (54).

The tutor module takes a wide variety of forms in different ITS systems. In some
systems, the pedagogical knowledge is deeply embedded in the code controlling the inter-
action with the student (54). In other systems, the pedagogical knowledge is represented
explicitly and separated from the rest of the tutor (9, 8). Tutor modules have to make deci-
sions at both the global level, controlling the sequence of instructional units, and the local
level, involving guidance, explanation and remediation with the student during a single
tutoring session. I'TS systems also vary in the degree of control they exert on the student-
tutor interaction. Systems range from the highly structured traditional CAI systems, to

guided-discovery systems (42), to pure discovery systems such as LOGO (30).

2.3 Related Concepts

This section provides a background to concepts that are not directly related to the

ITS field, but are important to this research effort.

2.3.1 Shallow vs. Deep Knowledge. In terms of knowledge-based systems, the
“depth” of knowledge refers to the degree of sophistication in the relationship between

cause and effect.

An example of shallow and deep knowledge is shown in Figure 3. Both representations
encompass the relationship between the accelerator and the speed of the car, but the deep
representation contains much more causal information. The main trade-off between shallow
and deep knowledge is explanation capability versus efficiency. Thus, shallow knowledge
is more efficient and easier to engineer, but it is difficult (or impossible) to justify the

decisions made by a shallow knowledge system.

2.3.2 Simulations. Shannon describes a simulation as:

the process of designing a model of a real system and conducting exper-
iments with this model for the purpose either of understanding the behavior

11

Shallow Knowledge Deep Knowledge

Push accelerator Push accelerator

Car goes faster Carbeura*or opens wider

More fuel added to mixture

Greater force during power cycle

More force on piston
More torque on crankshaft

Greater force on differential

More torque on axle
More force between road and tire

Car goes faster

Figure 3. Shallow vs. Deep Knowledge

of the system or of evaluating various strategies for the operation of the sys-

tem (39).

A number of widely variant models can be classified as simulations, but one distinc-
tion among simulations is the division between interactive and non-interactive simulations.
Non-interactive simulations take some initial set of parameters and run deterministically
to some finish state with no further input. Interactive simulations, on the other hand, also
have an initial set of parameters, but can take further input during the execution of the
simulation. Simulations can also be time-based, or event-based. Time-based simulations
have some internal periodic clock, and the simulation objects change state based upon the
time interval used for the clock. Event-based simulations have a variable clock which is
controlled by the interactions of objects in the simulation; if there are no object interac-
tions within the simulation during a period, then the simulation clock “jumps” ahead, and
conversely the simulation clock increases in granularity if there are many closely-spaced
object interactions. A time-based simulation will always take the same ambunt of wall-

clock! time to simulate a given amount of simulated time. The wall-clock time needed for

Wall-clock time is a term used to distinguish the time required to run a simulation from the time
being simulated. For example, it may take several days of wall-clock time to simulate a microsecond in a
computer, or it may only take an hour of wall-clock time to simulate an epoch in a geological simulation

12

an event-based simulation will vary based upon the number and interactions of the objects

within the simulation.

Event-based simulations are typically used for high-performance applications because
they can often run significantly faster than an equivalent time-based simulation. However,
for interactive simulations, the time-based strategy is chosen. This is because the internal '
clock in an interactive simulation must be “synched” to the wall-clock. For example, a
user running a driving simulation will expect that a second of wall-clock time roughly

correspond to a second of simulation time.

For the purposes of this research, a simulation will be considered to be a model of
some real-world system that an operator might control. The simulation will be composed
of a number of objects that correspond to the objects of which an operator would be aware.
Ideally, the interface to the simulation is as close as possible in appearance as the interface
to the real-world system. The'o.bjects have various state variables, and the combination of
all the state variables in the simulation comprise a simulation state vector. The simulation

will be discussed in more detail in Chapter 3.

Using this restricted definition of a simulation, the simulation can be modeled as a

particular type of finite-state automaton called a transition graph.

2.3.2.1 Transition Graphs. A transition graph is a mathematical model
that is composed of three things (10):

1. A finite set of states, at least one of which is designated as the initial state, called
the start state, and some (maybe none) of which are designated as final states.

2. An alphabet ¥ of possible input letters, from which are formed strings, that are to
be read one letter at a time.

3. A finite set of transitions that show how to go from one state to another based upon
reading specified substrings of input letters (possibly even the null string A).

Applying this model to a simulation, the first component is the set of all possible
state vectors (the state space) in the simulation. The second component is the power set?

of all possible control inputs (the control space) to the simulation, plus the time input. The

?The power set of a given set is all possible combinations of the elements of the set taken one at a time,
two at a time, ... up to n at a time.

13

third component is the simulation itself, which controls transitions between states based

upon control inputs and time.

It is worth mentioning that although a transition graph and a simulation are both
finite, the real world is infinite. Any computer model of the real world will be ultimately

finite, and an approximation of the real world.

2.3.8 Machine Learning. Machine learning is a sub-field of Artificial Intelligence
that is concerned with giving a system the capability to improve its performdnce over time,
typically through some automatic creation or acquisition of knowledge. Machine learning
covers the spectrum from completely constrained, guided (rote) learning to completely
unguided discovery-based learning approaches. This research uses inductive learning, which
is primarily concerned with the automatic generation of a hypothesis that distinguishes
among positive and negative examples of a target concept. Typically, an inductive system
is “trained” on a set of examples, a hypothesis is generated, and then the hypothesis is
tested on a set of unseen examples to test its generality. One of the most well-known and
extensively studied examples of an inductive learning system is Quinlan’s ID3 (32), which
used a decision-tree approach to classify positive and negative examples. A version of ID3

is used for this research.

2.4 Educational Theory

Standard, widely accepted theories of learning and training were used in the design
of the system. The following sections describe the relevant theories used in the areas of

training, learning, decision-making and practice.

2.4.1 Learning Theory. To be able to train an operator, some understanding of
the human learning mechanism is required. For this research, a well accepted theory of
learning was selected based upon its applicability to the general task of training; this theory
was then used in the design of the overall system architecture. This section describes the

theory chosen. Later sections describe how it is used in this particular research.

14

The main learning theory used is Anderson’s ACT* theory (1). One of the cen-
tral elements of Anderson’s theory is the distinction between procedural and declarative
knowledge. Declarative knowledge is knowledge that is factual in nature, and can be made
explicit, whereas procedural knowledge is knowledge about how to accomplish some task
such as driving a car or troubleshooting a circuit (31). Basically, Anderson’s theory states
that skill acquisition occurs when declarative knowledge is converted, or compiled to pro-
cedural knowledge (productions) through practice. Anderson justifies the requirement for
this compilation process in terms of the adaptability of the human cognitive system. Pro-
cedural knowledge controls behavior, thus it must be tested out and proven before it is

internalized.

The first step in Anderson’s skill acquisition theory is the declarative stage. During
this stage, the trainee has only declarative knowledge about the task he is learning. This
knowledge may take the form of basic facts about the domain, general-purpose proce-
dures, or specific procedures. However, even if the trainee knows specific procedures about
the task, this is not considered procedural knowledge because the trainee is using this
knowledge interpretively, until it is used and compiled to procedural knowledge through

practice (1). Anderson clearly makes this distinction:

The acquisition of productions is unlike the acquisition of facts or cognitive
units in the declarative component. It is not possible to simply add a production
in the way it is possible to simply encode a cognitive unit. Rather, procedural
learning occurs only in executing a skill; one learns by doing (1).

The advantage of using declarative knowledge interpretatively in the first stage of
skill acquisition is flexibility. However, interpretation is costly in terms of human memory

and speed, so the knowledge must eventually be compiled into a procedural form.

The second step of the skill acquisition process, knowledge compilation, encompasses
two processes: compilation and proceduralization. Compilation is the collapsing of a se-
quence of productions into a single production that has the same effect as the sequence
(chunking). Proceduralization is the instantiation of variables in a production, to essen-
tially create a more specialized production, thereby eliminating some of the demand on

long-term memory retrieval (1). The proceduralization process is analogous to Shiffrin’s

15

automatization process (34, 40), whereby the performance of skills is learned in an auto-

matic fashion, eliminating most of the cognitive load required for performing the skill.

Once the declarative knowledge has been converted to procedural knowledge, it is
further refined in the third stage of skill acquisition: tuning. The tuning stage of skill ac-
quisition consists of three phases: generalization, discrimination, and strengthening. Gen-
eralization is essentially the process of replacing bound facts in a production with variables
to broaden the production’s scope of applicability. For example, this can have the effect of
eliminating productions when two or more productions have identical consequents, and the
generalization process results in the productions having matching antecedents. Discrim-
ination is the addition of antecedents to a production, which has the effect of narrowing
the scope of the production. Finally, strengthening is the process whereby competing
productions are weighted based upon feedback as to their applicability (reliability). An-
derson theorizes that positive feedback is a more gradual process than negative feedback;
in other words, a production gets slowly promoted over time as it proves correct, whereas

a production will be quickly demoted if it proves incorrect.

Anderson’s theory is recognized both in the cognitive science field (31, 28, 24) and
the ITS field (43, 54, 52, 51, 16, 55). Shute’s criticism of Anderson’s theory is that it is
more applicable to procedural type domains, and less applicable to ill-structured domains
such as creative writing or economics (43). However, Shute’s criticism clearly supports the

use of Anderson’s theory in a architecture designed for training.

2.4.2 Operator Decision-Making Theory. The main job of the operator of a
Complex Dynamic System (CDS) is to make decisions and perform actions based upon
the state of the system he controls. I felt that it was important to use a sound theoretical
framework of the operator decision making process to facilitate the appropriate design of

the research architecture. This section describes the decision-making theory selected.

Rasmussen (33) has presented an extensive analysis of the information-processing
processes involved in CDS operator decision-making. Of particular interest is the in-
formation processing schematic, reproduced in Figure 4. The map shows a sequence of

information processes that an operator might use in a control decision. A theoretical op-

16

Evaluate

@

9

Interpret

Activation

1

Figure 4. Operator Decision-Making Schematic

erator could pass through all information processing blocks (solid arrow path), but often
“short-cuts” are taken, as indicated by the numbered, dotted lines. The information blocks

in the figure require some further explanation (adapted from (33)):

e Activation — This is the initial trigger that some action needs to be performed. It
results in a binary “alert” information state.

e Observe — This is the process whereby some set of observations are made to gain
data about the system.

o Identify — This is the process where the observed data is analyzed to produce an
overall system state determination.

o Interpret — This is the step involving high-level thought about the consequences of
the current state, safety considerations, efficiency, etc.

17

e Evaluate — This is another high-level thought step that compares the overall perfor-
mance criteria against the current considerations to establish an ultimate goal based
upon the current decision.

e Interpret IT — This process “grounds” the high-level goal back down a specific target
state for the system.

e Define task — The process determines which activities are required to reach the target
state.

e Formulate procedure — In this step, a plan is generated to accomplish the desired
task.

e Execute — The proper action is performed.

Clearly, every operator decision does not involve this entire process, the shortcuts

are frequently used for a variety of reasons (adapted from (33)):

1. This is strict stimulus-response behavior, involving a single action.

2. This shortcut is used when time constraints require a fast response; it is similar to
stimulus-response behavior, but involves a more complex sequence of actions.

3. This shortcut is taken when a subset of the overall system state is considered as an
overall indication of the system state, eliminating the need to evaluate the data in
terms of the entire system.

4. This shortcut is used when the student has learned a pre-defined cue for a pre-defined
procedure; this is essentially shallow knowledge for a procedure.

5. This shortcut is taken when certain data is a cue for a set of actions that must be
formulated into a procedure; this is one step deeper knowledge than the previous
shortcut.

6. This shortcut is analogous to number four, and is used when a pre-defined procedure
is cued by an overall system state.

7. This shortcut is analogous to number five, and is used when a set of tasks is cued by
an overall system state, but the tasks must be converted into a procedure.

8. This shortcut skips the determination of a system state in favor of the determination
of the desired target state.

9. This shortcut is used when the considerations of the current state directly imply a set
of tasks, without the need for deeper evaluation against some overall system criteria.

It is worth noting that only one of the shortcuts leads to a “non-action” state, the
other eight all lead to task, procedure, or execution states, which are all aspects of the same
concept of “operator action.” This aspect of the decision-making schematic is exploited in

the design of this research, and will be explained in a later section.

18

Rasmussen (33) divides his map into three main types of human operator behav-
ior: skill-based, rule-based, and knowledge based. Skill-based behavior involves only the
activation—execution shortcut. Knowledge-based behavior involves the interpret-evaluate
cycle, while rule-based behavior involves everything in-between these two regions. My re-
search is almost exclusively concerned with rule-based behavior, with some overlap into
skill-based behavior. Knowledge-based behavior is a completely different problem, and is

not addressed in my research.

2.4.8 Training Theory. As previously described, the goals and processes involved
with training vs. education are significantly different, with education admittedly more
complex than training. Many educational theories that may be considered too simplistic
to apply to the broad scope of “education” can be adapted to the more limited scope of
“training” quite well. This section describes some of the theories used and adapted for

this research.

2.4.83.1 Gagne’s Instructional Theory. One of Gagne’s most important
contributions to the field of educational theory was the fundamental idea that all learning
is not the same, and that varieties of learning differ based upon the conditions that are
required to promote a particular type of learning (31). Gagne proposes a taxonomy of
learning activities that range from stimulus discrimination at the low end (cognitively) to
learning schemata at the high end. My research is primarily concerned with the range in
Gagne’s hierarchy between “response learning” and “response integration.” According to
Gagne, the best method for facilitating learning in this range is practice with feedback,
and suggestive information on how to make a proper response (31). A second aspect of
Gagne’s theory is his nine instructional events (17), which can serve as a general-purpose

pedagogical structure for presenting information to the student: -

Gaining attention
Informing learners of the objective
Stimulating the recall of prior learning

Presenting the stimulus

AN

Providing “learning guidance”

19

6. Eliciting performance
7. Providing feedback
8. Assessing performance

9. Enhancing retention and transfer

Level of Performance

FIND

USE

REMEMBER J

Figure 5. Component Display Theory

2.4.8.2 Merrill’s Component Display Theory (CDT). Merrill’s Component
Display Theory (CDT) (27) provides a framework for content and goals of knowledge used
in training. Figure 5 shows Merrill’s performance-content matrix. Remembering involves
the simple retrieval of stored information. Using involves the application of concepts to
new situations. Finding involves the discovery of new concepts. The two shaded areas in
Figure 5 represent the idea that facts are too basic to be “used” or “found.” This may
seem unusual, since one can conceive of situations where facts can indeed be used and
found. However, this is a terminology confusion; under Merrill’s usage “fact” equates with
what many consider a “concept.” The checked blocks in the figure represent areas that are
pertinent to procedural knowledge training. As an example, the various types of knowledge

used in the domain of automobile driving might be:

Remember-fact: What is the maximum safe speed on an icy road?

Remember-concept: What are the characteristics of a skid?

Use-concept: If your car is traveling sideways, are you in a skid?

Remember-procedure: What is the best way to recover from a skid?

20

¢ Use procedure: Demonstrate a skid recovery

Using this framework of knowledge, Merrill postulates four different types of training

material presentation strategies (31):

Expository general (telling a rule)

Expository instance (telling an example)

Inquisitory general (asking about a rule)

Inquisitory instance (asking about an example)

Both the knowledge framework and presentation strategies are used in the instruc-
tional design strategies for my research. The specific details of how these theories are

applied are discussed in a later section.

2.4.4 Practice Theory. Because this research is primarily concerned with train-
ing, and because practice is a primary factor in the training experience, a theoretical
justification for the level of practice required for a task was desired. Unfortunately, prac-
tice theory is not as well developed as education and training theories. However, some use

can be made of the theories that have been developed.

DeJong (36) postulated that the time to perform a repetitive task reduces exponen-
tially until it reaches some limit beyond which no improvement is possible. This rela-
tionship has been verified empirically (11). The important aspect of this theory is that
improvement can be expected to be rapid initially, and then level out to a point where
further practice is not beneficial because of diminishing returns. Shute et. al. (44) verified
this result using a more general performance measure than cycle time. Although they
did not develop a formal equation-based measure of practice requirements, they did find
that there was an optimal level of practice, and that practice above that level had little or
no effect on performance. Their findings suggest that even a minimal amount of practice
can be effective, if the performance of the student is closely monitored (as it is in a ITS

system), allowing for “just enough” practice to be used.

Another interesting finding with respect to the theory of practice was found by

Schmidt and Bjork (38). They found that structured practice, which was optimal for

21

in-training performance, did not work well with respect to long-term retention and per-
formance. In a broad set of experiments covering a variety of domains, they found that
random ordering the structure of practice and feedback produced better long-term perfor-
mance, but poorer short-term performance. They hypothesize that varying the structure
of the practice forces the student to work harder, and isolate the training material from
the feedback process, which resulted in better long-term performance of the practiced task.
Their results suggest that there is novoptimal practice ordering, and in fact a tradition-
ally optimal ordering may be sub-optimal with respect to long-term performance. This
also suggests that in-training feedback as to the effectiveness of practice ordering does not

predict future long-term performance.

2.5 Related Research

This section discusses some current research efforts that are similar in scope and
intent to my research. Many of these efforts are long-term projects (five to ten years). The

research projects are described and contrasted with my research approach.

2.5.1 ACQUIRE-ITS. ACQUIRE-ITS (37) is essentially a knowledge-base build-
ing tool combined with an ITS authoring tool. After the knowledge engineer builds a
knowledge base using the ACQUIRE tool, he can then use the completed knowledge base
along with the ACQUIRE-ITS tool to create an ITS based upon that knowledge. The
ITS uses a case-based presentation methodology, using the structure of the rules to create
cases. Basically, the student is queried about the consequent of various rules based upon
the preconditions of the rules. The interaction with the student is text-based, although

supporting video and audio can be manually added as part of the ITS development process.

This research is loosely related to mine, in that it presents a “semi-automatic” use
of a knowledge base as a domain expert for an ITS. However, in contrast to my research,
ACQUIRE-ITS depends upon the particular structure and implementation of the knowl-
edge base, where I only specify an external interface. Furthermore, ACQUIRE-ITS at-
tempts to teach procedural knowledge in a declarative fashion. Because it lacks a true

practice component, ACQUIRE-ITS may not effectively teach procedural knowledge; pro-

22

cedural skills can only be learned by doing, they cannot simply be encoded as a new

cognitive unit (1).

2.5.2 ITSIE — Intelligent Training Systems wn Industirial Environments. Primar-
ily, ITSIE is an effort to investigate intelligent training systems for industrial domains,
particularly the use of qualitative modeling techniques and multiple models of instruction.
In support of this, the researchers are also developing a specification methodology, a generic
architecture, and a set of construction tools for intelligent training systems (45). The de-
velopment differs from a classical authoring system in that it supports multiple methods
of knowledge representation and instructional techniques. Sime (45) has developed an
extensive specification methodology, and some particularly interesting models of operator
behavior and knowledge based upon Rasmussen’s (33) theory. This has Been adapted for

use in my system, and is described in a previous section.

The ITSIE effort differs from my research in that it is primarily an authoring system,
albeit a complex and comprehensive system. It is an improvement over conventional au-
thoring systems in that it does not restrict the course author to one particular knowledge
representation or instructional strategy, but it does restrict the course author to one of
the implemented strategies. This may or may not be a problem, depending upon whether
~ one of the implemented strategies matches the needs of potential user. Use of the system
requires the author to encode his knowledge into the ITSIE format, including the simu-
lation, domain knowledge and pedagogical knowledge. My approach, in contrast, simply
imposes an external interface specification, without any regard for the internal format of

the knowledge.

2.5.3 NASA’s Intelligent Computer-Aided Training Authoring Environment.
The purpose of this effort is to develop a tool set (authoring environment) that implements
the standard ITS model, as well as a means to transition NASA’s Intelligent Computer-
Aided Training (ICAT) technology to the private sector (53). The architecture is defined in
a modular fashion, specifying which modules are required for an ICAT without specifying
how those modules are implemented (53). The system is designed to allow instructional

designers with limited programming experience to easily encode knowledge about mis-

23

conceptions, course design, exercises, and interfaces into each component of the ICAT
architecture. Additionally, the architecture is designed to take advantage of simulated

work environments (SWE) built for other NASA applications.

This research has some commonalities with my research goals, namely the specifica-
tion of modules at only the interface level, and the desire to use pre-existing simulations
of the domain environment. However, it differs from my research in that it is primarily an
authoring environment. The instructional designer must completely specify all exercises
that are presented to the student, as well as define a complete misconception library that

is used for diagnosing the cause of student errors.

2.5.4 Intelligent Simulation Training System (ISTS). The ISTS effort is a joint
project between the University of Central Florida, Embry-Riddle University, and General
Electric to build a generic training system that can train without the continuous involve-
ment of a human instructor. The researchers have attempted to separate the domain-
specific information from a training system, giving a “generic” training system that can
input domain-specific knowledge during intitalization (4). The domain knowledge present
in the system is contained in the Domain Expert (DE), the Domain Expert Instructor
(DEI), and the simulation (22). A human instructor must encode knowledge into the sys-
tem about how to teach in the domain, lesson information, and curriculum information.
Additionally, dynamic scenario generation is accomplished by having the human domain

instructor define how to change the difficulty of scenarios.

This research is closest to mine in intent, although there are still some significant
differences. Similar to my research, the goal of ISTS is to build a truly generic system that
requires only a limited amount of domain-specific knowledge upon initialization. However,
they require more knowledge than my system in the form of the DEI, which requires signif-
icant knowledge engineering upon the part of the human instructor. Furthermore, ISTS’s
pre-defined approach to dynamic scenario generation also requires more knowledge and lim-
its the flexibility of the scenario generation as compared to my strategy. Finally, unlike my
research, ISTS does not seem to implement any form of automatic knowledge acquisition

for the domain-specific knowledge, which is a further departure from my approach.

24

III. Architecture

There are two main tasks required for building an ITS ~ the construction of the ITS
framework, and the engineering of the domain-specific knowledge, both of which are quite
expensive in terms of time and resources. This chapter presents a high-level description of
a new architecture for a system that addresses both of these problems in training domains.
The details of how this architecture operates will be covered in Chapter 4 and 5. The
strategy used to attack the first task was to separate the domain-specific components
from the domain-independent components in a training ITS, allowing the construction of
a “generic” framework into which a course designer could input domain-specific knowledge
in a modular form to complete the system. However, instead of requiring the domain-
specific knowledgé to take some particular form, as in an authoring system, knowledge is
only specified at the interface level. This presents several challenges, but also has some
significant advantages because it allows domain-specific knowledge to be implemented with
virtually any tool, in virtually any form. This unique configuration is shown conceptually

in Figure 6.

SIMULATION

Basic

Simulation Ca4+
Authoring
Tools Lisp

Algol Fortan

KNOWLEDGE
BASE

CLIPS

Exys Tables
Custom
Programs

Figure 6. Knowledge Separation

The simulation and domain knowledge represent the domain-specific components of

the architecture, the rest of the architecture is generic across virtually any training domain.

25

These components can be developed using the plethora of tools that are available in these
areas, eliminating the need for a specialized authoring system representation and authoring
tools. Alternatively, the architecture can take advantage of pre-existing knowledge in either
of these components, significantly reducing the knowledge engineering requirements for the

system.

The second aspect of ITS building is knowledge engineering. This problem is attacked
using two techniques: minimizing the knowledge requirements, and utilizing machine learn-
ing for the creation and extraction of new knowledge. These techniques are especially

effective in the generic architecture, although they could be used in any architecture.

The first part of this chapter discusses the necessity of the two key domain-specific
components of the architecture. Next, an architecture for utilizing these components in a
generic fashion is described. Chapter 4 discusses the use of machine learning and scenario

exploration used in the architecture.

3.1 Knowledge Requirements

Training Effectiveness

Custom
System

Ideal

~

Simulation
and KB

with learningi

Simutation

S

Knowledge

Ineffective Effective Diminishing
Training Training Returns

Figure 7. Knowledge vs. Training effectiveness

Figure 7 shows a conceptual graph relationship of the amount of knowledge in an

ITS against its training effectiveness. The bottom threshold shows the minimal amount of

26

knowledge required for effective training. Virtually any sort of knowledge communication
can be considered at least rudimentary training, but without a minimal level of knowl-
edge, the training is going to be so ineffective or difficult that it is essentially useless. As
knowledge is added to this “base level” knowledge, significant gains are made in effective-
ness compared with the amount of knowledge added. However, at some point, the idea of
“diminishing returns” takes over and additional knowledge has little added effectiveness.
The ideal location is at the knee of the curve, where the maximum amount of benefit
for the added knowledge has been obtained. Machine learning can act as a “knowledge
multiplier,” essentially pushing the simulation/KB point farther up the curve of increasing
effectiveness.

System Cost

Custom System

Simulation & KB
with leaming

N

< - Ideal System

. Simulation & KB

Knowledge

Figure 8. Knowledge vs. System Cost

The ability to automatically expand knowledge through machine learning is particu-
larly attractive from an economic point of view, as shown in Figure 8, where the conceptual
relationship between knowledge engineering and system cost is portrayed. The point of
this graph is to show that as the amount of knowledge engineered into a system increases,
the life-cycle cost of the system increases at a greater rate. This is because the potential
conflicts between knowledge and cost/complexity of engineering and retrieving knowledge

multiply as the amount of knowledge in the system increases. The interesting aspect of

27

this relationship is that the addition of machine learning to a simulation and knowledge
base increase the effectiveness of the training, but with no corresponding increase in the

cost of the system.

There are two aspects to the use of a simulation/KB combination as the fundamental
knowledge input for a training system. Two possibilities exist: a simulation and/or knowl-
edge base already exists for a domain, and can be used for a training system, or one/both of
these components do not already exist. In the first case, an enormous gain can be realized
because a training system can be built with almost no knowledge engineering by using the
pre-existing components. However, even in the worst realization of the second case, where
both components have to be built, there is still a significant savings when compared to the

typical development of a training system.

The remainder of this section deals with the justification for why a simulation and
knowiedge base represent an amount of knowledge that is at (or below) the minimum level
for effective training. In other words, anything less than a simulation and knowledge base

cannot be considered feasible to use for training.

3.1.1 Training Simulation. There are three primary areas of justification for
why a simulation is a necessary part of any intelligent training system — pedagogical,
pragmatic, and historical. From a pedagogical perspective, it is clear that ultimately an
operator must learn to control some real-world complex system. It is difficult to envision
a training program where an operator learns how to control a system exclusively from a
book or classroom, then is expected to perform adequately when placed alone in front of
the system. Procedural knowledge can only be gained by doing (1); this implies that an
operator can only truly learn how to control a system by actively controlling that system

(practice).

Since operators must learn procedural knowledge by doing, then it may seem that
they could just practice on a real-world system. However, real-world systems do not make
ideal candidates for training. Frequently, the system that is being controlled is highly
expensive or dangerous; operator mistakes can have a devastating effect. Also, most real-

world systems have no means of setting up scenarios for the operator to practice, such as

28

emergency situations. Without that practice, the operator is required to rely on whatever
declarative knowledge he may have, which will not be automatized, and may not be reliable.
Pragmatically, simulations provide a reasonable compromise for a practice platform. The
biggest disadvantage to a simulation is that it is in some sense, an approximation of the
real-world system.! However, a training simulation may not require an extensive amount of
engineering fidelity if it has sufficient psychological fidelity (31). In other words, as long as
the simulation behaves externally as the real-world system does, it does not matter how it is
implemented “behind the scenes.” A training simulation’s purpose is to provide a system
that mimics the external behavior of the real-world system, not to study or model the
complexities of the internal physical system that is simulated. Additionally, simulations
have several advantages over real-world systems for training. Simulations are typically
less costly, less dangerous, can provide accessibility to the full range of possible tasks in a
system, and produce less stress on the trainee (31). Finally, simulation “authoring” systems
(50) are currently being developed that should greatly simplify the task of building domain

simulations for training.

There is ample evidence that simulations are the norm for all intelligent training
systems. Historically, there does not appear to be any training system in the literature,
either custom made or authoring system, that did not rely on a simulation of the domain

for training. An Army study (14) has verified the benefits of simulation-based training.

Simulations appear to be in the mainstream of training system design. Without
a practice platform, the trainee is not going to learn how to control the system; he is
going to learn declarative knowledge about the system. Pedagogically, pragmatically, and
historically, it seems reasonable to assume that a training system without a simulation will

not be effective.

3.1.2 Shallow Domain Knowledge. Knowledge is power, so at first it would
seem that the more knowledge that can be put into a system, the better. However, like

most engineering endeavors, knowledge has a cost — the cost of encoding the knowledge

1A perfect simulation would be copy of the real-world system. In some situations where the risks are
great enough, this type of simulation has been used, such as the command section on the Apollo moon
missions.

29

into the system through the process of knowledge engineering. This cost has become a
pervasive problem in the Al field, and was dubbed the “knowledge acquisition bottleneck,”
by Feigenbaum (15). This bottleneck motivated me to find out how ltéle knowledge could

be incorporated into a training system and still have it behave intelligently.

To determine the minimal amount of knowledge required for a training system, the
first step is to determine the minimal amount of knowledge required to represent the
operator’s task, and then add the additional knowledge required for a training system.
Taken at the most basic level, the operator receives knowledge about the current situation,
or state of the system, and outputs a set of control settings (actions) to the system. This
implies that the operator’s knowledge can be represented, at least conceptually, by a set
of “state-action” pairs, where every state of the simulation within his span of expertise?
is covered. Thus, any state the system enters (within his span of expertise) has a proper
response action.® The set of state-action pairs represent the minimal knowledge required

to perform the operator’s function, anything less would omit some aspect of the operator’s

job.

Obviously, most operators do not use a huge set of state-action pairs to accomplish
their job, but the state-action pairs are a model of the operator’s behavior about what
to do in any given situation; the two representations are isomorphic. The operator per-
forms as if he had a table of state-action pairs that he was consulting for each decision.
Later, I will show that the internal representation is unimportant for the purpose of knowl-
edge representation. Additionally, most operators have some deeper knowledge than that
represented by the state-action pairs, but this knowledge is not required to embody the

operator’s basic function.

Fundamentally, an ideal operator always performs the correct action; his knowledge
can be represented as a set of state-action pairs covering his span of expertise in the state

space of the simulation. Clearly, anything less than this does not completely represent

?Because the simulation is developed independent of the training system, it may simulate things that
are outside of the scope of the expert, and therefore not required for training.
34Doing nothing” is considered an action.

30

the operator, thus knowledge isomorphic to the set of state-action pairs is the minimal

knowledge required to represent the operator’s function.

3.1.83 Summary. A training system without a simulation is training declarative
knowledge and not the procedural knowledge necessary for the operator to truly learn the
task. A training system without knowledge isomorphic to a state-action pair representation
is incomplete, and thus omits knowledge. Without these two components, a training system

will be incomplete, inappropriate for training, and likely to be ineffective.

3.2 Architecture

The previous section discussed why a simulation and shallow knowledge are the min-
imal knowledge requirements for an intelligent training system. The following section will
detail my architecture for using these components in a generic training system, called
SCIUS* - Self-Creating, Intelligent “Un-authoring” System. “Un-authoring” is a term
used to distinguish the SCIUS approach from a conventional authoring system. A conven-
tional authoring system requires a course author to encode the domain specific knowledge
into a form compatible with the authoring system. SCIUS, on the other hand, has no
such requirement; the domain-dependent knowledge components can be developed with-
out knowledge that they are going to be used in a training system. Therefore, a training

system can be built with the SCIUS architecture, essentially without a course author,

The key element that allows this architecture to work is the use of machine learning
induction (described in detail in Chapter 4). Without induction, a system that used
a simulation and knowledge base could only present examples along with their correct
actions. It would only be able to explain what action was appropriate, but would not be able
to explain why an action is appropriate. This explanatory information is crucial to effective
training because it allows the student to generalize across classes of scenarios, instead of
attempting to learn unrelated state-action pairs. Additionally, this information provides a

means of structuring the presentation of scenarios to provide a baseline curriculum.

*SCIUS is a Latin word meaning “to know.” It is a root of the word “sciolism,” meaning a “superficial
display of knowledge.”

31

The following section describes an overall view of the SCIUS, followed by a detailed

description of the components of the architecture.

Knowledge
Base

StateT

...

P L L LT L r--_—---_----‘l
Y

: i '
I:] II
: :
; o + Knowledge :
; ctions : Acquisition '
{ : Module ;
= s |
: Actions —— - ;
| State Information 1‘ : t ;
; Actions State : E i
5 P i
5 Simulation : : H
H . T Scenarios g : :
! Work Environment : I:: i
N B _ Control N A ! H
: ’.

N Lesson Information [l :

: ;

H)

: ;

. Domain-dependent Interface g g
Learned Knowledge é scClus ;

Figure 9. SCIUS Architecture

3.2.1 Overview. Figure 9 shows the overall architecture for SCIUS. This ar-
chitecture was designed to integrate as seamlessly as possible with the operator’s future
environment, as reflected in the partition shown in the figure between SCIUS and the
work environment. The majority of the training interaction between the student and
SCIUS is accomplished through the operator’s normal interface with the remainder ac-
complished through a specialized interface. The black boxes in Figure 9 represent domain-
dependent computer interfaces that allow SCIUS to utilize pre-existing knowledge, and

human-computer interfaces that allow the student to interact with the system.

32

The overall operation of the system is fairly straightforward, and is divided into
two phases: initial knowledge acquisition and normal training. During initial knowledge
acquisition, the knowledge acquisition module (KAM) uses the knowledge base information
to explore the simulation space. The knowledge gained during this phase is added to the
tutor and expert modules to provide domain-specific knowledge for training. Additionally,
a scenario library is built up during this process; these scenarios are filtered, organized,

and structured for presentation to the student during training.

During training, the control module uses information from the student model, tutor
module, and expert module to control the scenarios demonstrated to the student from the
scenario library, as well as control the simulation to allow for scenario presentation. Based
upon the student’s performance in the scenarios, the control module updates the student
model. Additionally, the control module presents additional information to the student
with respect to information about scenarios, or other training information through the

specialized interface.

3.2.2 The Simulation. The simulation and knowledge base are the two primary
domain-specific components of the SCIUS architecture; the remainder of the architecture
is generic. Because of this, the simulation and knowledge base are defined in terms of a
standard interface; this allows these components to be developed separately from the ITS,

or developed without any knowledge that they are going to be used for an ITS.

Fundamentally, a simulation can be represented as a black box that takes input in
the form of an action vector, and outputs a new state of the world, as shown in Figure 10.
The boxes in Figure 10 represent real-world objects that are represented in the simulation.
The gray boxes represent objects that the operator will be aware of, because he directly
controls these objects through the action inputs. The operator need not be aware of any

of the other objects in the simulation.

Because the action vector can be a null vector, the simulation continually outputs
a state vector, one for each time increment of the simulation. Thus, the state of the
simulation at any time ¢ is a function of the starting state Sy, ¢ and the sequence of

action vector inputs {KI,A‘Z,Xs, ...,A_;}. In addition to these factors, the state of the

33

Action Vector State Vector

{[S11.[S2],[S3], -.. [Sm]}

{[A1][A2][A3], ... [AR

Figure 10. An Abstract Simulation

simulation is also a function of the meta-control vector, which allows the simulation to
make transitions that are not part of its normal operation; this will be described in greater
detail later. For the purposes of this research the simulation is deterministic, so the state
at any time is only dependent upon the factors described above. Non-determinism could
potentially be accommodated, but it is an unnecessary complication at this stage in the

research.

The simulation can be treated as modeling a transition graph; the nodes in the graph
are simulation states, and the transitions between nodes are controlled by the action vector,
time, and the control vector. An example of a small simulation state grai)h is shown in
Figure 11. Figure 11 represents part of a graph for a simple driving simulation, with only
one state variable, vehicle speed, and two control inputs: brakes {on,off} and accelerator
{0% - 100%}. The “120 mph” node represents an illegal state for the simulation, or one
that cannot be reached by any other node in the graph. In the case of Figure 11, this might
be because 120 mph is above the maximum speed for the vehicle. One unique characteristic
of illegal nodes is that the simulation is undefined at these points; transitions from these

nodes could go anywhere or nowhere.

In reality, the simulation state graph of any non-trivial simulation would likely be
much too large to be represented on paper; if the simulation contained real-valued variables
or unbounded integers, the transition graph would be infinite. The number of states in
the transition graph is given by [[i, si;, where s; is the number of possible values for

attribute 7, and n is the number of attributes in a state vector. For example, the prototype

34

?

ff
acc: 60%

brakes: off
acc: 60%

brakes: off
acc: 80%

brakes: off
acc: 80%

Figure 11. Hypothetical Simulation State Graph

brakes: off
acc: 50%

simulation used for this research has 106 state variables, with an average of five states per
state variable, giving 5'% (1.2z10") possible states for the simulation. It is important to
note that the actual number of states the simulation can enter will likely be much smaller

than this, because many, if not most, of these nodes represent illegal states.

3.2.2.1 The Meta-Control Vector. A simulation without some means of
external control is of little more use than a real-world system for training. One of the main
advantages of a simulation is its flexibility; the meta-control vector allows this flexibility
to be exploited. For the purposes of this research, the meta-control vector allows the
simulation to make transitions that would not normally occur through the transition graph.
The main control requirement for the simulation is that it have the capability to be started
at any state; this mechanism is essentially what allows the simulation to be used for training
by giving it the means to load scenarios. This includes loading scenarios from the library for
training purposes, or injecting fault states into the simulation (which couldn’t be reached
by any other means). A second requirement is the ability to halt the simulation or to have
it run for a pre-set number of time increments. Without this capability, the simulation
would essentially be unusable because it could never be stopped to present an example, or

study the results of some action.

35

Simulation

Action Vector State Vector

Operator

Figure 12. An Abstract Knowledge Base

3.2.8 The Domain Ezpert Knowledge Base. Figure 12 represents the closure of
the simulation model in Figure 10; the simulation inputs actions and outputs states, while
the operator does the reverse. The domain knowledge base models the operator’s function,
responding with the appropriate action vector for any given state in the simulation. The
knowledge base is only modeled at the interface level; the internal form of the knowledge
base could take any form, such as a conventional expert system, a lookup table, a specialized
program, or even a neural net. However, at the interface level, the knowledge base acts
as if it is implemented internally as a huge table of state-action pairs, with one entry
for each possible state of the simulation within the span of knowledge encompassed in
the knowledge base. This implies that the simulation is deterministic. Determinism is a

requirement because rule induction depends upon well-structured examples.

3.2.4 Knowledge Acquisition Module. The knowledge acquisition module (KAM)
is the heart of my architecture, and is the primary element responsible for making the
generic approach work. The KAM feeds learned and discovered knowledge to three com-
ponents of the architecture: the scenario library, the expert module and the tutor mod-
ule. This knowledge comes from the KAM observing and controlling the interaction of the
knowledge base with the simulation; the details of this process will be discussed in Chapter
4. To accomplish this task, the KAM must be interfaced with both the knowledge base and
the simulation. The particular details of the interface will be implementation-dependent,

but could take a variety of forms such as Dynamic Data Exchange (DDE), On-Line Linking

36

and Embedding (OLE), sockets, files, or some custom program. In particular, the KAM
requires the capability to query the knowledge base based upon an arbitrary simulation
state. This query ability must be reasonably quick (significantly faster than the one sim-
ulation time interval) because the knowledge query is required for every simulation cycle
(timing is discussed in Chapter 5). Next, the KAM must be able to control the simulation
by sending actions and receiving state information. Additionally, the KAM needs to be

able to control the simulation and load it with an arbitrary scenario.

3.2.5 Control Module. The control module is the supervisor for the various
ITS modules during the training phase. The control module governs the structure of the
training by integrating a variety of information from the different modules to dynamically
determine the next training action. First, the control module consults the student model
to determine an area of training that the student needs, and that is close to knowledge he
already has demonstrated. Next, the tutor module is consulted to determine the appropri-
ate training event and instructional progression for the material. Based upon the training
event, the control module may present a scenario from the scenario library to the student
(through the simulation interface), or may present some other instructional information
(from the expert module) through the SCIUS system interface. It is worth noting that the
previous discussion is in reference to a control module design; the actual control module
would be the last thing to be implemented in a full implementation of SCIUS. Details
about the implemented elements of SCIUS are presented in Chapter 5.

3.2.6 Tutor Module. The generic tutor module embodies domain-independent
pedagogical information; the domain-specific pedagogy information is acquired from the
KAM. The primary purpose of the tutor module is to provide a training structure; this in-
formation is based upon Gagne’s (17) instructional events. The instantiation of the proper
training strategy is accomplished through the use of automatically acquired knowledge
about concept complexity and relationships. For example, one part of the pedagogical
strategy is to teach simpler concepts before more complex concepts. An instantiation
of this concept in the driving domain might be to teach straight parking before parallel
parking.

37

3.2.7 Student Model. The student model is based upon the classic “overlay”
model, in which the student’s knowledge is modeled as a subset of the expert’s knowledge
(54). The overlay model is certainly not the most comprehensive model, but it is a well
established and adequate model. The subject of student modeling is currently a source of
great controversy in the ITS community, with many researchers questioning whether mod-
eling should be performed at all (12). Since the focus of this research is not modeling; it
seemed appropriate to select the most well-established modeling approach for this architec-
ture. In any case, the model presents a clear mapping between the student’s approximate
knowledge and an ideal; when the student has covered all the knowledge areas represented

in the expert model, he can be considered qualified, or equivalent to the expert.

3.2.8 FEzpert Module. As discussed, this architecture does not contain any
domain-specific knowledge; the training knowledge is acquired through the KAM. However,
Figure 9 shows a block of domain-independent expert knowledge (a term that is almost an
oxymoron). In this case it refers to the general structure of the expert knowledge, which is
expected to be in the form of generalized state-action pairs. This knowledge is extracted
from the knowledge base by the KAM through the process of induction over the scenarios
discovered during scenario exploration. The knowledge in the expert module constitutes

the bulk of the training material presented to the student.

3.2.9 Scenario Library. The purpose of the scenario library is to store and
structure the scenarios discovered during the scenario exploration process. The library also
includes the scenarios pre-specified as emergency scenarios that are not operator-induced.
The scenario library is structured in terms of related scenarios that require the same action;
these scenarios are all considered instances of each unique action type. These scenarios
are read by the control module for presentation to the student, either as demonstrations

or tests.

3.8 Summary

This chapter has presented an architecture for a domain-independent intelligent train-

ing system that requires only domain-specific knowledge in the form of a simulation and

38

knowledge base. The domain-specific knowledge is specified only at the interface level, so
the internal representations of this knoWledge can take any form. The remainder of the
domain-specific knowledge is extracted automatically through scenario state-space explo-
ration and machine learning (described in Chapter 4). The SCIUS architecture uses the
standard ITS model and components, with the addition of a scenario library and a knowl-
edge acquisition module. Furthermore, the architecture integrates unobtrusively with the
operator’s standard work environment, providing most of the interaction with the operator
through the simulation interface, which closely resembles the real-world system interface,

therefore greatly reducing the difficulty of the transition from training to the real world.

39

IV. Knowledge Acquisition

The previous chapter presented a framework for a generic intelligent training system
that uses a simulation and knowledge base only at the interface level, without any access to
the internal representations of these two components. Simply using these two components
is not sufficient for training, because all such a system could do would be to present
scenarios with their appropriate actions, with no structure to the presentation, or any
explanation about why actions were appropriate. This chapter deals with the methods
I developed to learn and extract knowledge from these two components to provide the
training knowledge required to effectively utilize these components. First, justifications for
why the architecture only requires external access to these components will be presented,

followed by a discussion of how the internal knowledge is accessed at the external interfaces.

4.1 Accessing Internal Representations

The internal symbolic representations of the knowledge base and simulation were
accessible in the original design of this research, with the idea that the knowledge con-
tained in these components could be parsed, analyzed, reasoned about, and structured for
presentation to the student. However, preliminary experiments and analysis quickly made
clear the idea that the internal representations of these components are much too variable

to be used for any sort of structured input to the ITS.

4.1.1 Knowledge Base Internals. Originally, the plan for this research was to
utilize a conventional expert system, and parse the actual knowledge base as part of the
knowledge extraction process. This approach seemed intuitive, because it would allow
complete access to the antecedents and consequents of rules. Thus, there would be an easy
method to explain the justification for the rules, by way of the antecedents. For example,
consider the following rule in the driving domain:

(defrule car-ahead-brake
"Determine if there is a car close ahead of our car, and closing too
fast"

(path-ahead unclear) ;; there is an obstacle ahead
(obstacle-ahead-type car) ;; of type "car"

40

(distance~to-obstacle 7o-distance)

(closure-rate-to-obstacle ?c-rate) ;;

(test (< ?o-distance 50)) ;; the object is 50 feet ahead

(test (> c-rate 10)) ;; closing at 10 mph

=>

(assert (action apply-brakes 100))) ;; apply the brakes at 100}

If the operator gets into this situation, the system would notice this rule has fired.
It is desirable to provide a good explanation of why the operator should apply this rule.

“Parsing” rules could be written to provide a natural language explanation capability like:

(defrule object-ahead-phrase

"convert an object-ahead rule to an English phrase"

(antecedent (path-ahead unclear)) ;; find a rule that deals with an obstacle
(antecedent (obstacle-ahead-type Totype)) ;; find the type of object

=>

(assert (phrase "There is a <Totype> in the road ahead."))) ;; gen the phrase

Other rules would fill out the rest of the explanation based upon the characteristics
of the rule. So far, this seems like a pretty good solution; a little knowledge engineering
is required to write the parsing rules, but this provides a fairly easy method to convert
the expert system knowledge into a form more amenable for training. The important
features of the simulation state vector are clearly identifiable in the antecedent of the rule.
Presumably, anyone generally familiar with the domain could examine the rule base and
create the explanation rules. However, the driving rule presented above is in an ideal

format for explanation. Consider the following equivalent set of rules:

(defrule r001

(p-a unc)

(p 7p-state)

(equal ?p-state v001)
=>

(assert (phase d-obs)))

(defrule r002

(?phase <= (phase d-obs)) ;; This finds a pointer for a phase-change fact
(p 7p-state)

(equal 7p-state v001)

=>

(assert (obs car))

(retract 7phase)) ;; this retracts the phase-change fact to allow a change

41

(defrule r003

(obs car)

(d-o 7d)

(c-o0 7¢)

(test (< ?d 50))

(test (> ?c 100))

=>

(assert (phase wrn-crsh))))

(defrule r004

(?p <= (phase wrn-crsh))

(obs car)

(d-o ?d)

=> :

(assert (action apply-brakes 100)))

These four rules are functionally equivalent to the single rule presented above, and
might be the result of a particularly naive knowledge engineer. Anyone examining these
rules (including the knowledge engineer after a few days) would not understand exactly
what the symbols in these rules mean, nor what they are accomplishing. It is clear from
this simple example that any knowledge extraction technique that relies upon accessing the
internal representation of a knowledge base is going to be subject to the limitations of the
knowledge engineer who created the knowledge base. This in itself is justification for why
access to the internals of the knowledge base is a bad idea. However, there is an additional
limitation of this technique — it is strongly dependent upon the particular expert system
shell used to create the knowledge base. The rules shown above are in the C Language
Integrated Production System (CLIPS) format, and CLIPS is particularly amenable to
interfacing with external programs. Most expert system shells have a proprietary rule
format and syntax, which implies that a custom interface would need to be built for each
potential expert system shell used by the ITS. Furthermore, many expert system shells do

not even have a rule output format that could be read by an external program, making

interfacing with these shells impossible.

Because of the limitations described above, it was determined that a generic system
could not depend upon any internal representation of the knowledge base. Thus, I con-
cluded that the knowledge base would have to be accessed at the next higher level; i.e., the
interface. The SCIUS architecture defines how the expert behaves at the external interface

42

level; this is behavior that can be depended upon, and is not subject to the variations of
engineered rules. Using the expert knowledge at the interface level solves the problems
described above, because it is completely independent of the internal representation. This
has an added benefit, namely that because we are only using the interface level knowledge,
the knowledge does not even have to be represented by forms other than an expert system.
Theoretically, the knowledge could take any form that meets the interface requirements,
such as a look-up table, custom program, or even a neural net. However, the interface
approach does cause some new challenges. The original approach called for accessing the
antecedents of the rules to isolate the important features of‘ the rule; this is important
information because it tells which features of the state vector are relevant and which are
not. Later sections will discuss this problem in depth, along with the approach for solving

it.

4.1.2 Simulation Internals. The previous section discussed why an ITS cannot
extract knowledge from the internal representation of the knowledge base; the primary
reason is the variability of knowledge base structures and platforms. No predictable struc-
ture can be expected from an arbitrarily structured knowledge base. The same argument
applies even more persuasively to simulations. Knowledge bases, at least on some level,
define rules and facts, so there is a relatively high 6f commonality among knowledge bases
created under different shells. However, simulations can be created in virtually any lan-
guage, having virtually any structure. The same simulation could be implemented in C,
FORTRAN, Lisp, or Ada, and every simulation could have a completely different internal
structure. The only conceivable method for accessing the internal structure of a simulation
would be to specify a particular representation, syntax, and language for the simulation
implementation, which would significantly limit the flexibility of the ITS. Most impor-
tantly, this would nullify any potential knowledge engineering gains that could be made

by using an externally developed simulation.

Because the simulation internals are less accessible than the knowledge base internals,
it makes sense to access the simulation only at an external interface. This approach has

many of the same advantages as the external knowledge base approach. Primarily, the sim-

43

ulation can take any internal form as long as it meets the external interface requirements,

providing significant flexibility and adaptability to a wide variety of simulations.

4.1.83 Summary. Accessing the simulation and knowledge base internals seems
the most logical first step for automated knowledge acquisition because the knowledge is
explicitly represented in a machine-readable form. However, variations in the implemen-
tation of this knowledge make it essentially unusable in a symbolic form; simply because a
system behaves correctly does not mean that the internal representation is usable. Since
the system behaves correctly at the external level, it makes more sense to access knowledge
at the external level. This can be accomplished by using machine learning to acquire the

knowledge required for training.

4.2 Machine Learning

Exactly what constitutes learning is a topic of debate in the machine learning com-
munity; some researchers feel chunking! does not qualify as learning because the knowledge
obtained by chunking is already present in the system, but simply has not been realized.
For the purposes of this research, I will define machine learning as any activity that cre-
ates new information not represented (or accessible) ezplicitly anywhere in the system.
Because this is not a machine learning research effort, the philosophical debate as to the

true characteristics of learning is not important.

The following sections will first discuss the machine learning problem, followed by

my particular approach for acquiring the knowledge required for training.

4.2.1 An Illustration of The Problem. This section presents a very simple example
of the knowledge base/simulation interaction. The intent of this example is to present a
concrete example of the learning problem, to allow for a clearer understanding of the more

theoretical discussions presented later.

1Basically, chunking connects inference chains. For example A = B and B = C can be chunked to
form A = C.

44

Consider a small fragment of the domain of automobile driving that involves making

a right turn at a stop sign. A simulation in the driving domain might have (at least) the

following state attributes:

A “start vector” for a right turn could be:

car speed

car direction
car location
brake position

. accelerator position

steering position
fuel level

engine rpm

engine temperature

. next road sign

. next intersection
. next intersection state
. next street on route

car position engine next path route
| spd | dir loc brake | acc | steer | fuel | temp sign intersection state | street
1 22 N | Main(2.5) off 20% 0° 9 185 | Stop(.7) | Main&Maple(.8) | busy | Maple

This state vector indicates that the automobile is traveling North at 22 mph, 2.5 miles

from some origin on Main street. The gas pedal is engaged 20%, and the steering wheel is

at the neutral position. The automobile has 9 gallons of gas, and the engine temperature

is 185 degrees. The next road sign visible is a stop sign, and the automobile is approaching

the intersection of Main and Maple, which is 0.8 miles away. Finally, according to some

pre-planned route, the automobile needs to be on Maple street next.

A nominal progression through states could be:

45

| spd | dir loc brake | acc | steer | fuel | temp sign intersection state | street

2120 | N Main(2.8) off 20% | 0° 9 186 Stop(.4) Main&Maple(.8) | busy | Maple

<action: brake = on>

10 N Main(3.0) on 0% 0° 9 183 Stop(.2) Main&Maple(.3) | busy | Maple

5 N Main(3.1) on 0% 0° 9 182 Stop(.1) Main&Maple(.2) | clear | Maple

0 N | Main(3.15) on 0% 0° 8.99 | 181 Stop(.05) | Main&Maple(.15) | busy | Maple

3
4
5 0 N | Main(3.15) on 0% 0° 8.99 | 181 | Stop(.05) | Main&Maple(.15) | busy | Maple
6
7

0 N | Main(3.15) on 0% 0° 8.99 | 180 | Stop(.05) | Main&Maple(.15) | clear | Maple

<action: brake = off, acc = 20%, steering = +45°

8| 5 | E | Maple(:34) | off | 20% | 45° | 8.98 | 108 | Yield(7.0) | Maple&Eim(.7) | busy | Maple

Clearly, this is a lot of information to deal with; simulation state vectors are typically
not very human-readable. In English, the automobile approaches the intersection (1-2),
applies brakes until the automobile comes to a stop (3-5), waits for the intersection to
clear (6-7), then makes a right turn (8). The key knowledge to discover from this example
is why the actions are performed after step two and step seven. In other words, “why do
those states trigger actions, and not the states before them?” From a human perspective,
it may be somewhat obvious that the reason to apply brakes is because the automobile is
approaching a stop sign. We could guess that the knowledge base contains some rule of

the form:

(defrule brakes-1

(next_road_sign stop) ;; next sign ahead is stop
(distance next_road_sign 7d)

(test (< ?d .5)) ;; the sign is less than .5 miles away
=>

(assert (action brakes level on)) ;; apply the brakes

A more complete rule might be of the form:

(defrule brakes-2

(next_road_sign stop) ;; next sign ahead is stop

(distance next_road_sign 7d)

(test (< ?d .5)) ;; sign is less than .5 miles away

(desired_street 7dstreet)

(next-intersection 7streetl ?street2)

(equal 7?street2 ?dstreet) ;; the street we want is at the next intersection
=>

(assert (action brakes level on)) ;; apply the brakes

46

This rule encapsulates deeper knowledge about the domain because it includes the
information about the upcoming intersection containing a street that is on our pre-planned
route. However, to accomplish the operator’s job in this case, the extra information is
actually extraneous; it is enough for the operator to realize he must stop because of the
upcoming stop sign. It is important to note that to extract these two rules from the set of
state vectors described above requires a significant amount of human common-sense and
background knowledge. An equally valid rule which describes the state vectors could be:

(defrule brakes-3
(engine_temp ?temp)
(test (equal ?temp 186)) ;; the engine temperature is 186 degrees
=>
(assert (action brakes level on)) ;; apply the brakes

From a human perspective, this rule clearly has problems; it is correct for the given
state vector example, but it does not really capture the knowledge of the domain. This
rule could fail in a number of ways — it could fail to fire in a situation that required the
brakes, and it could fire in an inappropriate situation that did not require the brakes. It is

apparent from this simple example of rule discovery that we cannot discover the relevant

state variables that trigger an action by simply looking at the variables which change.

4.2.2 Induction. The previous section presented an example of why it is very
difficult to learn given no background knowledge and only a single example of a target
concept. However, machine learning induction can learn with no background knowledge, by
using a set of examples instead of a single example. This section describes my approach to

using induction to extract the relevant features (concept) from a set of scenarios (examples).

Classic induction deals with learning a “concept” that distinguishes a set of positive
examples from a set of negative examples — the concept should include all positive examples
and exclude all negative examples. In this architecture, an example is a specific scenario,
or state vector; positive examples are scenarios that require a specific action while negative
examples are scenarios that do not require that action. A concept is a set of instantiated
features that distinguish scenarios that require a specific action from other scenarios that do
not require that specific action. For instance, in the driving example, there are two possible

concepts that distinguish the “brakes” action: (a) (next-path-sign = stop, next-path-sign-
p 3 g

47

distance < .5) and (b) (engine-temp = 185). For my purposes, induction attempts to
isolate a minimal set of relevant features that distinguish the specific action scenarios from
every other scenario. This is critical information for training — without it, the student is
left to flounder for himself while trying to figure out which aspects of a complex scenario

are important.

The inductive algorithm used for this research is ID3 (32), a well-accepted, standard
approach to induction that utilizes decision trees to construct concepts. A plethora of
decision tree algorithms exist. While ID3 may not be the optimal algorithm, the use of
induction in the architecture is modular, so different induction algorithms could be used

in place of ID3.

Relevant scenario features are isolated using the “information theoretic” measure in
ID3. Basically, a single feature is chosen that separates the examples, creating branches
of a tree. Then, the branches of the tree are split on another feature, and so on, until the
leaves of the tree are composed of homogeneous sets of examples. Each path from the root
of the tree to a positive example leaf defines a component of a concept; the disjunction of
these alternate paths defines an overall concept that distinguishes the positive and negative
examples. The information theoretic measure basically splits each subtree on the feature
that provides the most information. Fér example, the “engine-temp” feature provides
maximum information because it completely splits the positive and negative examples of
the brakes concept, with (engine-temp = 185). The “desired street” feature, on the other

hand, provides minimal information because it does not split any examples.

4.2.2.1 An Ezample of Induction. Induction takes a set of positive and
negative examples of a target concept, and attempts to determine the set of features that
distinguish the positives from the negatives. In this example, the target concept is “brake
= on,” and we would need a number of examples (state vectors) that led to this action,
as well as other examples which led to no action or other actions. The inductive approach
uses simple ID3 (32), which uses an information theoretic measure to determine the best

features to use for classifying the examples. Basically, features are chosen on the basis of

48

how well they separate the examples. Consider the very small test set of examples below:

cls | spd | dir loc brake | acc | steer | fuel | temp sign intersection state | street
+ 20 N Main(4.3) off 20% 0° 9 182 Stop(.4) Main& Ash(.8) busy Ash
+ 18 | N Main(2.8) off 20% | o0° 9 186 Stop(.4) Main&Maple(.3) | busy | Maple
- | 19 [N | Main(30) | on | 0% | 0° 9 | 181 | Stop(.9) | Main&Maple(.2) | busy | Maple
-] 0 | N | Main(3.15) | off | 20% | 0° | 899 | 185 | Stop(.05) | Main&Maple(.15) | busy | Maple

The first two cases are positive examples of when the brakes should be applied,
the second two are examples of when the brakes should not be applied. The one feature
that completely partitions the examples is “Stop{.4mi},” leading to the induction of a
rule similar to brakes-1 above. The idea is that with enough examples, the non-causally
related features will vary (as temperature does above), and provide less information than
the causally-related features. In reality, many more examples are required for successful
induction, but we have a very large pool of examples at our disposal through the scenario
exploration process (described in section 4.3). In the example above, the exploration
process would involve such things as applying the brakes at step one, not applying brakes

at step two, and applying a steering control movement at step four.

4.2.2.2 Induction in SCIUS. Figure 13 shows a conceptual flow diagram of
the rule induction process. The input to the process is a set of state-vector trace sequences
that come from the scenario exploration process (described in section 4.3). Each state
vector trace consists of a sequence of state vectors and their associated actions. State
vector traces do not necessarily have the same length; rather, the number of vectors in a

particular trace is a function of the exploration process.

A preprocessor determines the unique actions in each sequence and “labels” the
state vectors as positive and negative examples of each unique action for input to the ID3
engine. Each unique action represents a separate training set for the induction engine, and
is processed in a separate cycle. The number of positive and negative examples will vary
between training sets, and is limited by the number of available positive examples found in

scenario exploration (an essentially unlimited number of negative examples are available).

49

Structured Examples

A0 Al eee@ Aj

(S04) (S0, (30,-)
(80, AD) SL+) (S5 519
 (S1,A0) R R
(527 (24 (52,)
(82,A1) —>|Preprocessor[—» @ . [
. ° O
(Sn,An) L]] [
(84 (Se+) (Sf,-)
(Sd+1,4) (Se+1,) (Sf+1,-)
(Sd+2,-) (Se+2,-) (SE42,4)
° . [
[}) []
Scenario Trace ¢ ¢ ¢
(Sn) (Sn,) (Sn+)

b !

{(s0=x0),(s1=x1)...(sa=xa)} => A0

{(s0=x0),(s1=x1)...(sb=xb)} => A] +———
Induction

{(s0=x0),(s1=x1)...(sc=xC)} => A] oo——|

Induced Rules l

A0 Al 000 Aj
Sf+2

w
<
w
5]

XX
€
oy
Y e0e
w
Yeoeos

Library

Figure 13. Rule Induction Flow

The main output of the induction engine for each unique action is an instantiated subset
of the available state variables that require the action. Essentially, this is a rule consisting
of an antecedent that contains the relevant state variables and a consequent that contains
the appropriate action. Additionally, as part of this process, the scenarios are stored in

the scenario library, grouped by unique action.

The induced rules form the core of the domain knowledge used for training; they

represent an approximation of the knowledge contained in the expert knowledge base.

The induction process has the effect of converting a deep knowledge base into a shal-
low knowledge base, as shown in Figure 14. This induced knowledge base behaves exactly
as the original knowledge base, within the scope of the original training set of scenarios.
The antecedents of the induced rules provide the justification for why the action is per-
formed while the rules themselves provide a means of determining the appropriate action

to perform in any given situation. The induced rules provide the information necessary to

50

Training Examples

® @ ® ©

(C) (®)
G e » Induction * 0 ®

Behavior
(H)
©
O Q

Deep Knowledge Base Shallow Knowledge Base

Figure 14. Knowledge Base Flattening

train using Merrill’s Component Display Theory. The antecedent allows for explaining or
testing a rule (expository and inquisitory general), while the induced rule itself allows for

explaining or testing examples (expository and inquisitory specific).

4.2.2.8 Macro vs. Micro Action Representation. There are two possible
interpretation of what constitutes an action. An action could be considered either a set of
control vector inputs (a macro action) or a single control element input (a micro action).
The first interpretation (macro action) will lead to more (potentially combinatoric) poten-
tial actions because every action that occurs during exploration is a unique action. For
example, a macro action that consists of the control vector [a, b, c] is different from the
macro action [a, b}, which is different from the singleton macro action [a].> A micro-action,
on the other hand only consists of a single control input. Thus, the control vector [a, b, c] is
treated as three separate actions. This approach results in fewer potential actions, because
micro-actions do not combine combinatorically. This may seem like a trivial distinction,

but it is actually quite important to the induction process.

*But the action [a, b] is equivalent to [b, a]. Order is unimportant.

51

The induction process treats a single instantiation of an action (of whatever type)
as a positive example. For macro-actions, this simply means that the entire macro-action
represents a positive example. Using the micro-action approach, actions are broken down
into micro-actions (single control inputs), which represent multiple positive examples and
therefore multiple runs of the induction process. Macro-actions, however, present a poten-
tial flaw in the induction process that prevents their use. Consider the following abstract

knowledge base, where W, X & Y are states and a and b are control element inputs:

WAXAY = [a,b]
W AY = [a]
W AX = [b]

If an example that leads to action [a, b] occurs, then the induction proceés will not
be able to complete. Using macro-actions, [a, b] will be treated as a positive example, then
[a], then [b], all on separate runs of ID3. While [a, b] is being treated as a positive example,
[a] and [b] will be considered negative examples. However, if induction uses W A X as part
of a concept for [a, b], then there will be no remaining features to split the decision tree
to exclude [b]. Induction will not be able to find a concept to completely split the positive
and negative examples, unless there happens to be some other unrelated feature that serves

that purpose.

However, using micro-actions, the following rules will be induced:

W AY = [a]
W AX = [b]

These rules are functionally equivalent to the knowledge base presented above.

4.2.2.4 Induced Rule Verification. One interesting (and unexpected) side-
effect of the induction process is the pseudo-verification of the knowledge base that happens
when the rule is induced against the context of the simulation. It might seem that the
ideal situation would occur when the induced rules match the actual rules exactly. How-
ever, as previously described, the knowledge base could be implemented quite poorly, and

still function correctly at the interface level. Verification is a software engineering process

52

that deals with whether a system has been built correctly at the syntactic level. This is
contrasted with validation, which deals with whether a system has been designed correctly
to solve the intended problem. Validation requires knowledge of the domain, while veri-
fication does not. The remainder of this section will discuss the eight possible syntactic
errors presented in (19), and describe how the rule induction process addresses these errors
in a knowledge base. In effect, the induction process discovers a “streamlined” version of

the knowledge base by not discovering some rules that have syntactic errors.

Redundant rules Redundant rules can have syntactic or semantic redundancy. Syn-
tactic redundancy means the rules have identical antecedents and consequents, although
not necessarily in the same order. For example, AAB — C and BAA — C. If a knowledge
base contained both of these rules, the rule induction process would essentially eliminate
one of them because the induction process recognizes that the order of the antecedents is
irrelevant. When the induction process arbitrarily found one of the rules first, and then
discovered the second rule, it would recognize that the rules are equivalent and would not

add the second rule to the induced knowledge base.

Semantic redundancy, on the other hand, involves two rules that are identical seman-
tically. For example, {AA B — thunderstorms} and {B A A — electrical storms}. Because
the induction process is a domain-independent process, there is no way for this type of
redundancy to be uncovered. However, it is likely that this type of redundancy would be
uncovered in the process of interfacing the knowledge base to the simulation, because there

would be two actions with different symbols that accomplished the same task.

Conflicting Rules Conflicting rules are rules that have identical antecedents, but
opposite consequents, such as AA B — C and AA B —~ (. The result of this error
under induction would depend upon the conflict resolution strategy and monotonicity of
the inference engine. If conflicting facts are allowed, then induction will not be able to find
a concept to separate positive and negative examples of C and ~ C. If only one of these is
allowed, then induction will find the concept that covers the fact that is allowed. In either

case, induction will not properly avoid this type of error.

53

Subsumed Rules Subsumed rules are rules in which the antecedent is a superset of
another rule’s antecedent, such as AA BAC — D is subsumed by A A B — D. This type
of error is avoided by the induction process because the induction algorithm discovers the

simplest concept that covers the examples, so the more complex rule will be ignored.

Circular Rules Circular rules employ a circular reasoning process, such as A — C
and C — A. This results of this type of error will depend upon the particular expert
system shell used; if the shell does not implement refraction, then circular rules will cause

the shell to become stuck in an infinite loop. With refraction, both rules will be learned.

Dead-end Rules Dead-end rules have consequents that are not part of the antecedent
of any other rule, nor are they part of the goal of the system. In other words, these rules
assert facts that are useless to the operation of the knowledge base. The induction process

will ignore these types of rules because their antecedents contribute no information to the

- splitting of positive and negative examples.

Missing Rules A missing rule occurs when there are facts that are not used by any
rules. The implication is that there is some rule that should use the facts, although it
could also be the case that there are just extraneous facts in the system. In any case,
the induction process could be used to find “missing” rules by examining the difference
between the number of state variables in the input to the knowledge base, and the number

of state variables used in the induced rules.

Unreachable Rules An unreachable rule is the inverse of a dead-end rule; it is a rule
that has a antecedent that can never be met under any circumstances. These rules will
be ignored because they will never fire, and thus are essentially not part of the knowledge

base from the interface level.

4.2.2.5 Other Effects. In addition to the formal syntactic errors describe
above, there are a few additional beneficial side-effects of the induction process on the input
knowledge base. These are the result of the induction process working with the context
of the simulation; these effects are not corrections of syntactic errors, but are effects that

streamline the knowledge base.

54

Chunking Chunking takes a series of inference chains and collapses them to a single
rule, such as A — B and B — C will be chunked to A — C. Some causal information is lost
in the chunking process; the new rule represents shallower, but more efficient knowledge.
The induction process performs chunking because it works only at the interface level of
the knowledge base. In the example above, the induction process uses only the input of

’A’ and the output of ’C.” The intermediate step of B’ is not available information.

Causally extraneous antecedent elements One tendency of knowledge engineers is to
err on the side of caution, and add antecedents to a rule to ensure that it does not fire at
an inappropriate time. However, in pra(;tice some of these extraneous antecedent elements
will never occur, making them superfluous. The induction process works within the context
of the simulation; if a rule says A A BA ~ C — D, and C never occurs during simulation

exploration, then only A A B — D will be learned.

Symmetrical Rules Symmetrical rules are rules that differ only by one (or a small
number of) antecedents, like AAB — D and AAC — D. If, during simulation exploration,
"B’ and ’C’ always occur together, then only one of these rules will be learned, because
the other is essentially extraneous within the context of the simulation. Again, this is
an efficiency trade-off. There is causal information that is lost when one of these rules is

eliminated, but the remaining rule performs the job of two rules.

Completeness Although the induction algorithm does tend to streamline the original
knowledge base, it does have some limitations, namely that there is no way to know whether
the input knowledge base has been completely discovered. The completeness of the induced
knowledge base is a function of the variety of the training examples. If a certain rule deals
with a particular situation that never occurs in the entire set of training examples, then
that rule will never be induced. Later sections deal with the scenario exploration process,
which addresses the issue of how many scenarios are needed to fully “expose” the expert
knowledge. In any case, there is not an issue of accuracy, because the system continually
verifies the accuracy of the induced knowledge base against the expert knowledge base;

any discrepancies are corrected by further induction.

55

4.2.8 Summary. The induction process takes a set of representative examples
(scenarios) and determines the relevant features (state variables) that lead to the desired
action. The ID3 algorithm will tend to find simpler concepts that cover the available ex-
amples, making ID3 an appropriate induction algorithm, although any alternate algorithm
could be used. The output of the induction process is a streamlined, partially verified,
potentially incomplete version of the original knowledge base, along with a structured set
of scenarios that constitute the scenario library. The induced knowledge is the core of the
domain-specific training knowledge; it allows concepts and principles to be presented and

tested along with the presentation and testing of scenarios.

4.8 Scenario Ezploration

The previous section described the induction process, which used a representative set
of scenarios to determine the relevant features and causes of particular actions. The mech-
anism for finding the scenarios is the scenario exploration process; this process searches
the scenario state space in a systematic manner to find a representative set of scenarios
in a infinite, or extremely large state space. Additionally, the scenario exploration process

finds scenarios that are used for training (via the scenario library).

4.83.1 The Problem. The crux of the problem is how to find a finite set of
training examples that covers an extremely large state space, with no domain knowledge
for guidance. Typically, scenarios are crafted by hand to optimally illustrate certain aspects
of training, but this process is knowledge and labor intensive and provides only a relatively
small, static set of scenarios. Additionally, hand-crafted scenarios must be updated by
hand whenever knowledge changes. In contrast, an automated scenario exploration process
allows an essentially unlimited supply of new scenarios, and can automatically generate

new scenarios whenever knowledge changes.

One obvious alternative for scenario generation is sampling, which I call state-based
exploration. This technique involves defining a range (or set) of possible values for each
variable, and using this information to generate random state vectors. The advantage of

this approach is that it is statistically likely to generate a good covering of the scenario

56

state space. The generated vectors will likely be representative of the state space as a
whole. However, this approach has one fundamental flaw — there is no way to determine
whether a particular state is “legal” or not. An illegal state is defined as a state for which
the simulation was nét designed; Figure 11 in Chapter 3 presented an example of an illegal
state. At first, it was thought that this problem could be overcome by using the simulation
as a sort of “filter,” with the idea that the simulation would self-correct by transitioning
towards legal states. As objects in the simulation influenced each other, they would force
illegal states back to legal states. I also believed that there would be many more legal

states than illegal states. Both of these arguments turned out to be flawed.

First, if a simulation is forced into a state that it is not designed for, then transitions
from this state are undefined. The simulation could crash, never transition, or transition
to a completely unexpected state. A robust simulation could be designed to correct from
illegal states, or filter out illegal states from the scenario input process, but there is no
justification for believing an arbitrary simulation would work this way or have these capa-
bilities. Second, there may be an infinite number of illegal states. Consider a simulation
of a steam boiler, where pressure and temperature are directly related. The legal states of
pressure and temperature define a line; every pressure-temperature combination outside
this line is illegal. In this situation there are an uncountably infinite number of illegal (and

legal) states.

The fundamental problem of state-based exploration is the presence of a potentially
infinite number of illegal states, making sampling techniques infeasible. Without some
means to discriminate between illegal and legal states, illegal states could be used for either
concept induction or student training, both of which would have negative effects upon
overall training correctness and effectiveness. It is not reasonable to expect a simulation
to have this discrimination capability, so some other means of discrimination must be

employed to ensure only legal scenarios are generated.

4.4 Action-Based Ezploration

The simulation is not guaranteed to do anything when it is forced into an illegal state.

However, the simulation is guaranteed, by definition, to only transition to legal states from

57

legal states. Actions (including the null action) cause only legal transitions; thus, by
sampling the action space of the simulation instead of the state space, an action-based

exploration process will find only legal states.

State Space

State-Based Exploration Action-Based Exploration

llegal State Space l___] Legal State Space
¢ Explored State

Figure 15. State vs. Action Based Exploration

- One disadvantage of the action-based approach is that the explored scenarios are not
necessarily representative of the simulation state space as a whole — they do not necessarily
provide a good covering of the space. This is because the action-based process is essentially
sequential; it explores connected sequences of nodes through the space, whereas a state-
based approach “jumps” around the space. An action-based approach may eventually find
a representative set of nodes in the state space, but given the same number of nodes, the
output of the action-based process will be less representative than a state-based précess.
This difference in covering is shown conceptually in Figure 15. In a strongly-connected®
simulation state graph, the entire legal state space can be found from a single legal node.
However, in reality most simulations are not strongly-connected. The implications of this

will be discussed below.

%A strongly-connected graph is a graph where any two arbitrary nodes are connected by some path.

58

null

Figure 16. Example Simulation Graph

4.4.1 Simulation Graphs. Figure 16 shows a fragment of a prototypical simulation |
graph, illustrating some of the problems with a non-strongly connected graph. Node A
represents a source node; any node in the graph (except D) can be reached from node
A. Node B represents a sink node; once the simulation reachés this state, it makes no
further transitions. Node D is an illegal node, transitions from this node are undefined.
Node C represents a corrected deviation from the expert path (the darkened arcs). Node
E is a steady-state node; the null action will keep the simulation in that state indefinitely.
Finally, the transition from node C to A represents an unnatural transition, one that could
not occur through some operator action, but is instead forced by using the simulation

meta-control vector.

An example of a source node might be the start-up state of a nuclear reactor; it
might be the case that the simulation is not designed to handle shutting down the reactor,
but it is desired to simulate the start-up process. Another example of source node is a
component failure. Most training simulations will not model systems at the component
level, with component reliability models, failure modes, etc., because failures would hap-
pen too infrequently to be used for training. Instead, the simulation will be “forced” into

a component failure state for the purposes of training; this failure state is a source node

59

because it cannot be naturally reached by any other state. Source nodes are problematic
because they can never be found through a domain-independent exploration process. For
the scenario exploration process to work, all source nodes that are important to the simu-
lation must be specified in advance, either through a state vector description, or through
some accessible procedure call. It is reasonable to expect that this information is avail-
able in an independently-built simulation, because without it, the simulation wouldn’t be

particularly usable because it could never reach these states.

A second problem with non-strongly-connected simulation graphs is sink nodes such
as node B in the figure. A sink node represents a “catastrophe” situation; i.e. the sim-
ulation designer felt it was not worth simulating anything beyond that point. Examples
of sink nodes might be a plane crash in an aircraft simulation or a meltdown in a nuclear
power plant simulation. Sink nodes are also problematic because a strict action-based
exploration process will halt at that point, and will not discover any new nodes. This
problem is detected, however, by using a “watchdog” timer that forces the simulation into
a new (or previous) state whenever the exploration process appears stuck. However, the
one problem with this approach is the presence of cycles in which the simulation appears
to be making transitions to new states, but is in reality navigating a circular path through

the state space. Cycle detection is a complex problem, beyond the scope of this research.

The methods described above eliminate the disconnectedness of source and sink
nodes, allowing the simulation state graph to be treated as a strongly-connected graph.
With a strongly-connected graph, the exploration process can potentially find any node

from any other node, so the entire state space can be explored.

The expert path in Figure 16 represents an “ideal” progression through the simula-
tion, given some initial starting node. As a student continues to perform inappropriate
actions, he deviates further and further from this ideal path. This concept is shown in
Figure 17. If the student later performs an appropriate action, then he may immediately
return to the expert path (1), he may have to pass through several intermediate nodes
to reach the expert path (2), or he may reach an entirely different expert path (3). It is
desirable to keep the student as close to the ideal path as possible; as he progresses farther

and farther from the ideal path, he may reach a state which prevents access to the original

60

3

Appropriate Action
—————— Inappropriate Action

Figure 17. Expert Path Deviations

ideal path. For example, if an overheating reactor is ignored long enough, it may reach a

state at which cooling it to the ideal temperature is impossible.

4.4.2 The Ezploration Process. The overall goal of the exploration process is
twofold: to “expose” as much of the expert knowledge as possible and to provide a set of
appropriate scenarios that can be used for training. Expert knowledge is exposed when a
particular state causes a rule to fire (or some equivalent knowledge component in another
knowledge representation), suggesting an action to perform. The second goal is accom-
plished by the nature of the exploration process; instead of finding a set of scenarios that
is representative of the state space, the action-based process finds a set of scenarios that

is representative of the situations the operator is likely to encounter.

As previously discussed, a state-based exploration process is statistically likely to
provide a good covering of the simulation space, whereas an action-based process will tend
not to provide a good covering of the entire space. However, a representative covering
of the simulation space may not necessarily be desirable, because the simulation space
encompasses a much wider variety of states than the student will ever face as an operator.
At any given simulation state, there is a single appropriate action (control vector) to

perform, and a much greater number of inappropriate actions. As a student continues to

61

perform inappropriate actions, he potentially reaches an exponentially growing number of
simulation states that are removed from the expert path. Because the number of “deviant”
simulation states grows exponentially, the number of potential training concepts also grows
exponentially. For example, if there are 100 possible unique actions at any given state,
then there are potentially 100 unique states reachable from the original state in a single
step. However, in two steps, there are potentially 100% reachable states, and so on. In
reality, many of these states will not be unique, but the potential is there — the farther the
student is removed from the expert path, the more concepts we need to teach in order for

him to return to the expert path, if it is even possible.

The combinatoric explosion in deviant path concepts further reinforces the idea that
we want to keep the student as close to the ideal path as possible. Instead of teaching a
state that is reached by multiple inappropriate actions, and has an equally complex return
path, it is better to prevent the student from reaching that state in the first place. Because
of this, a good covering of the simulation space may actually be a liability because it will
contain more states that are far removed from the expert path than states close to the
expert path. Given limited resources, it is better to concentrate on the situations that the
student is most lkely to face, than to concentrate on situations that are representative of

the entire simulation space, but unlikely to be encountered.

Keeping the student close to the expert path provides a constraint that allows the
search of an infinite space to be feasible, and to provide meaningful results. This is accom-
plished through a technique called “iterative spreading.” Basically, the process works by
first finding the expert path through the simulation for a given starting point (typically
the source nodes), providing a baseline stream of states. The expert path is found by set-
ting the simulation to the initial state, then querying the knowledge base to find out what
action is recommended. This action is then executed, causing the simulation to change

state, and then the process repeats.

Next, the expert path is followed again, but at each state a deviation (an inap-
propriate action) is injected. Deviations come from sampling the action space, which is
a pre-specified list of actions with possible instantiations of those ranges. An example

of this might be: (brakes{on,off}, accelerator{0%-100%},turn-signal{left,right,neutral}).

62

This information represents additional knowledge that must be input to the system, but
this knowledge should be readily available as part of the interface between the simulation

and the knowledge base.

After a one step deviation path is explored from the expert path, a two step path
is explored, and so on, providing a gradual spreading exploration path from the initial
expert path. This process is iterative, because at each step the explored scenarios are
used for induction, providing a new set of discovered concepts. The process halts when no
new concepts are discovered during a particular exploration set, suggesting that the expert
knowledge has been reasonably exposed. This is clearly a heuristic measure, but there
are no detrimental consequences if knowledge is not exposed, because of the consistency
checking process, described in Section 4.5. Basically, if any knowledge is not discovered
during the exploration process, but is encountered during the normal training operation

of the system, it will be integrated into the available knowledge.

4.4.2.1 Steady State Nodes. One problem with the exploration technique is
nodes such as node E in Figure 16. These “steady-state” nodes are states where no action
is appropriate; the simulation/knowledge base combination typically stalls at these points
because no action is required, so no state change takes place. At first, it would seem that
this type of condition could be detected by the exploration process because the simulation
would be stalled without a state change for an extended period of time. One technique for
addressing this problem would be to use a type of watchdog timer; if the simulation did
not change state after some number of time intervals, then the simulation could be forced
to some other state or source node. However, one possible problem with this technique is
a “delayed state-change” node. This type of node occurs when an action starts a timer for
some process that is hidden in terms of the state vector description, essentially “behind the
scenes.” For example, a nuclear reactor simulation might require that the core be heated
before the reactor is started. If the core temperature has two possible states: “cold” and
“warm,” then the simulation will effectively stall while the reactor is heated. No action
will be required, and no state change will be apparent. However, after some period of

time, the simulation will change state without any action on the operator’s part. A strict

63

watchdog timer might mask this sort of state change because the watchdog would force
a state change before the naturally occurring state change occurred. The only certain
method for dealing with this problem is to have meta-level simulation knowledge about

delayed state-change nodes, and set the watchdog timer accordingly.

4.4.8 Summary. There are two types of scenario exploration, state-based and
action-based. State-based exploration finds a set of scenarios that are representative of
the entire simulation state space while action-based exploration finds scenarios that are
representative of the scenarios an operator is most likely to face, making it more ideally
suited for training. The goal of the action-based process is to provide scenarios that
expose as much of the expert knowledge as possible, and to provide a representative set
of training scenarios for the scenario library. The action-based process works by sampling
the action space of possible operator actions, and implementing these actions causing
iteratively further deviation from the ideal expert path. This process continues until no
new knowledge is obtained in a particular exploration level. The output of the exploration
process is a set of scenarios that are used for the training scenario library, and as input for

the induction process described previously.

4.5 Consistency Checking

One unique feature of this architecture is that the entire knowledge acquisition pro-
cess does not have to be complete. Classic inductive learning research is concerned with
learning a concept from a set of training examples that can correctly classify unseen exam-
ples. Inductive learning researchers typically do not have access to a “perfect classifier,”
(called an oracle) that can unfailingly classify any possible example, because it would defeat
the purpose of induction. However, my use of inductive learning is somewhat different from
the classic research approach. The knowledge base acts as an oracle; it can, by definition,
correctly classify any possible example (scenario). Inductive learning is used to isolate the
relevant features that cause an action, not to develop a concept that can be used inde-
pendently of the oracle. Because of this, I am less concerned with the completeness of the

induced concepts. The induced concepts will be correct within the scope of all examples

64

that have been encountered; if the exploration process works well, than the concepts will
be nearly complete. However, it could certainly be the case that some unusual scenario
is encountered that is not properly covered by the induced concepts. This inconsistency
represents new knowledge that must be integrated into the system.

New

Induced Knowledge
Kn%wledge Knowledge [*
ase Base
Scenario A B
I y scenario
»|Consistenc: Induction
Check
A=B?
Agree Disagree
- Scenarios
Scenario
Library
oK Hold
\]
ITS

Figure 18. Consistency Checking

This process is shown conceptually in Figure 18. A scenario is the input for any type
of knowledge base query. Whenever a query occurs, the output of the real knowledge base
is checked against the output of the induced knowledge base; if the two agree, then the ITS
proceeds with whatever task it was accomplishing. This process must be reasonably quick,
faster than a single simulation time interval as discussed in Section 5.4.2. However, if they
disagree, then the ITS goes into a hold state while the scenario is saved by the induction
process for off-line processing. This new scenario can not be used for any explanation
process, however, because it is not consistent with the induced knowledge base. It can
only be presented as a shallow stimulus-response type concept without any information
as to why the action is appropriate, until the new scenario is integrated into the induced
knowledge base. Although the use of this scenario is limited pedagogically, this is preferable

to teaching the student a concept which may be wrong.

65

This new scenario represents valuable information because it is inconsistent with the
existing induced knowledge base, and it is a scenario that the student has at least some
likelihood of facing (because it was encountered). The induction process uses this new
example, along with pre-existing examples to induce a new concept that encompasses the
new example. This new knowledge is then added to the induced knowledge base. In this
manner, the completeness of the knowledge in the ITS increases over time; eventually
it will be unlikely that scenarios will be uncovered that are in conflict with the induced
knowledge base. Additionally, continual consistency checking allows the initial knowledge
acquisition process to be less than perfect; any omissions will eventually be discovered by

the normal training process.

4.6 Curriculum Extraction

A final aspect of knowledge acquisition is the automatic development of a baseline
curriculum from the exploration of the simulation and knowledge base. The concept of
a “curriculum” covers a broad range of organizational schemes, but for the purposes of
this research, a curriculum is an ordering of training concepts. The overall structure of
training is accomplished in line with Gagne’s instructional events (17), but the instantia-
tion of this template is accomplished by the curriculum extraction process. Basically, the
extraction process uses domain-independent heuristics to structure the presentation order-
ing of particular concepts. Examples of domain-independent heuristics are: “teach simpler
concepts before complex concepts,” and “teach more frequently occurring concepts before
rare concepts.” Concept complexity is measured by the number and arity of preconditions
in a particular induced rule. Additionally, simpler concepts may be proper subsets of more
complex conbcepts; this represents a prerequisite for the more complex concept. The pro-
gression from simpler to more complex concepts defines a hierarchical structuring of the
overall concept space. It is important to note that the curriculum extraction process de-
velops a baseline curriculum; the actual curriculum will be customized during the training

session by the student model and actions of the student.

The customization process is not particularly complex. The curriculum extraction

process will provide a directed graph of material for the student to learn. An ideal student

66

will progress down the graph will no deviations. However, if a student has difficulty with
a particular concept, he can cycle back to the prerequisites for that concept for remedial
training. Additionally, the amount of time spent on a concept, and the specific emphasis
will depend upon the particular student. For example, if a student has difficulty with one
component of a action vector in a concept, then the scenarios chosen from the library will

emphasize that component.

4.7 Summary

This chapter presented a description of the knowledge acquisition process, the core of
the generic training system architecture. Knowledge acquisition consists of two interrelated
main processes: scenario exploration and rule induction. Scenario exploration traverses the
simulation state space to discover representative scenarios for training. These discovered
scenarios are used by the induction process to induce a streamlined representation of the
original knowledge base. Incompleteness in the induced knowledge is corrected by the
consistency checking process. Finally, an additional aspect of the knowledge acquisition
process is the automatic construction of a baseline curriculum, based upon the discovered
knowledge and structure of explored scenarios. The previous discussion has been at a
domain and implementation independent level; the next chapter will discuss the proof-of-
concept system, and some implementation issues important for the actual realization of

the generic architecture.

67

V. Implementation Issues

The purpose of this chapter is to present the results obtained by the development of
the prototype system, which consists of a basic implementation of the essential aspects of
SCIUS, along with a demonstration simulation and knowledge base. Along with the pro-
totype results, various implementation-level issues will be discussed. The purpose of the
prototype system is to demonstrate the SCIUS architecture in practice and to highlight
interesting aspects of SCIUS’s behavior. It is believed that the prototype implementa-
tion is representative of a real-world implementation of SCIUS, but there is no means for
claiming statistical validity of the results presented in this chapter across training domains
as a whole.! First an overview of the prototype will be presented, followed by detailed
discussion of the simulation, knowledge base, and induction issues. Finally, a discussion
of the limitations of the SCIUS model will be presented, followed by the conclusion and

summary of results.

5.1 Introduction

The SCIUS prototype consists of three main components: a basic implementation of
the SCIUS architecture, a demonstration knowledge base, and a demonstration simulation.

There were three main priorities in the design of the SCIUS prototype:

e Build a system that is substantially more than a “toy” system.

¢ Build a system that involves a minimal amount of non-research related software

development
e Build a system that is representative of real-world training domains.

The first priority was important because many Al systems have appeared to be
successful on toy problems, then suffered difficulties when attempting to extend them to

larger, more complex, realistic problems. The second priority was used because of the

It is worth mentioning that there is no conceivable method for obtaining statistical verification of a
training architecture, because there is no way to sample training domains. Experiments could be conducted
with human students to determine how much they learned versus a control group, but this would provide
verification of the training model, and not the architecture used to train with the model.

68

nature of research, and time limitations. The third priority was considered in order to
make the results of the prototype as meaningful and applicable to training as possible. The
second priority is in direct conflict with the other two, but it was the overriding priority
because of time and resource limitations. These priorities impinge on two elements of the
prototype design: the depth of the implemented SCIUS architecture, and the choice of the

prototype domain.

The depth of the SCIUS prototype architecture is sufficient to demonstrate the impor-
tant aspects of this research. A full implementation of SCIUS would involve the complete
operation of the system, from initial knowledge acquisition to student interaction. For
the purposes of this research, it was decided to develop a prototype that implemented
only knowledge acquisition. The SCIUS prototype discovers the knowledge required for
a standard training model (as presented in Chapter 2), but the actual presentation and
interaction with the stucient is not implemented. Building the remainder of the SCIUS
architecture would be a nontrivial engineering task, but would not be interesting from a

research perspective.

The choice of the demonstration domain for the SCIUS prototype was also motivated
primarily by the second priority described above. It would seem that the easiest method for
finding representative domain data would be to use real-world data. However, data from
a single real-world domain may not be representative of real-world domains in general.
Additionally, real-world data is typically difficult to obtain because it involves working
with other organizations and unknown formats. On the other hand, a hypothetical domain,
consisting of a knowledge base and simulation that do not represent a real-world domain,
has several advantages. The main advantage is complete freedom in the construction of the
knowledge base and simulation. Using real-world domain data will frequently be an “all or
nothing” approach, but with a fictional domain the domain components can be constructed
only to the level required to ensure the domain is more complex than a toy domain.
Knowledge engineering is greatly simplified because the knowledge in the fictional domain
is not constrained by real-world requirements?; the knowledge engineer is not required to

learn the domain. This flexibility allows a variety of knowledge “idiosyncrasies” to be built

21t is instead constrained by the knowledge engineer’s imagination, which is a different problem.

69

into the knowledge base, without concern for how well they map to the real-world. This,
in turn, allows SCIUS to easily be tested on these idiosyncrasies, to learn how they affect
the overall knowledge acquisition process. Finally, the choice of a fictional domain has
advantages for later potential education experiments, because the subjects will not have
any pre-existing knowledge of the domain. For these reasons, the SCIUS prototype uses a

fictional domain.

The intent of this research was to investigate the process of knowledge acquisition
in an intelligent training system. The design of the prototype reflects this emphasis. A
real-world training situation could have been modeled, but this would have involved an
extensive amount of knowledge engineering without contributing to the investigation of
knowledge acquisition. A complete prototype could have been developed, and experiments
conducted, but this would have only served to verify the training model used, and not the

process of knowledge acquisition used.

5.2 Prototype Architecture

The SCIUS prototype consists of a limited implementation of the SCIUS architecture,
along with & domain simulation and knowledge base. The SCIUS prototype architecture is
mostly complete, with the exception of the presentation components; i.e. the SCIUS pro-
totype discovers and configures the knowledge required for training, but does not present
it to the student. The presentation component could be implemented in a generic fash-
ion, however. As discussed previously, the instructional interface to the student should be
minimal; the majority of the student interaction is conducted through the simulation inter-
face. The instructional interface would need to present the following types of information:
student directive (watch example, practice, demonstrate), student example informational
(corrective feedback, concept presentation, action presentation), and curriculum informa-
tional (related-concepts, high-level concept, summary). This could be implemented in a
domain-independent interface, and the required information could be presented through
the interface by the presentation component of SCIUS. In a full implementation of SCIUS,
the domain course designer would not need to develop the presentation interface, or provide

any domain information for presentation.

70

The fictional domain chosen was the operation of an antimatter reactor in a fictional
starship. This domain represents a prototypical CDS operator task, and involves such
tasks as system reconfiguration, monitoring, and emergency handling. Much of the domain
knowledge was generated from scratch, but some concepts were developed from a technical
manual (48). The knowledge base is implemented as a C Language Integrated Production
System (CLIPS) knowledge base consisting of 55 rules. The simulation is implemented in
the Common Lisp Object System (CLOS), under Windows NT. The simulation consists
of 30 objects and 106 total object attributes. The SCIUS prototype architecture is also
implemented in CLOS. While the prototype system is smaller than a typical real-world

system, it is more substantial than a toy system.

5.2.1 Knowledge Base. The knowledge base consists of mostly “flat” rules,
involving a state-based antecedent and an action consequent. An example of such a rule
is:

(defrule ari-stress
"if the ari is stressed, turn down the am level"
(ari state stressed)
(ari level 7level)
(test (> 7level 20))
=>
(assert (action ari level 20)))

This rule simply states that if the antimatter reactant injector (ARI) is stressed, and
the level of the ARI is above 20, then set the level to 20. However, there are a number
of more complex rules implemented, to test various aspects of SCIUS’s operation. First,
phase rules control the firing of different sets of rules, based upon the desired configuration
of the reactor. For example, if an order is given to set the reactor to “cruise” configuration,
and the reactor has not been started yet, then the knowledge base will assert phase rules to
implement the start-up procedures. If the reactor has already been started, and the order
for cruise is given, then the start-up rules will not fire. Additionally, there are asymmetric

and symmetric rules, that deal with symmetric aspects of the simulation. Asymmetric rules

differ in threshold values for symmetric simulation components while symmetric rules are

71

essentially the same for symmetric simulation components.® Finally, rules with extraneous

preconditions are implemented.

5.2.2 Simulation. The prototype simulation is implemented in Common Lisp,
using the Common Lisp Object System (CLOS) as a means of modeling the simulation
objects. Thirty simulation objects are modeled, consisting of 106 attributes; a simulation
state vector is 106 elements long. The simulation runs under Windows NT, and implements

a graphical user interface (GUI) to allow the operator to control the simulation.

Engineering -

t
CRUISE Complste Status

T ——

Engine Config ARI 'STRESSED
o ® MRI - s
(a0 [NOMINAL
Port-Field ACONS M_L____
p— MCONS [NOMINAL
ol [2.98E9 ARC [OVERHEAT
 Boost X MCONS
) Ol ot Condute 0% Crystal {NOMINAL
F Cofl | om
! [« T [=] . e
(55 o 1w || [3866 € [nommAL
pc STRESSED
Warp 75% Y [000D Total Power < < '“s“fﬁgs‘;go""—"
0 2.98E+9 .
YT on Tap Conduit (% ACONS
. L] om St Conduit
Sthd-Field []
] 100 L—A
X Boost Injector ARI: 25 PINJ [FROZEN
(PROZ&N
Coil [« 151 SINJ - MOMINAL
PCOIL |GAUSSED

; ARC Heater

Starboard Imake-itsul I consult I
I tick] "0 til:ks"l

Figure 19. Simulation Interface

Figure 19 shows a typical screenshot of the GUIL. The thirteen objects listed on
the status display (right side of screen) are the objects that the operator is aware of;
the remainder of the objects are hidden in the simulation. The center-bottom bank of six

buttons are used for development; the remainder of the controls are used by the operator for

3Symmetrical simulation components are simulation objects that have the same attributes, but represent
different instantiations of the object template. (e.g., the left and right engine on a two-engine airplane).

72

various tasks. The text box at the top of the screen is the directive for reactor configuration,

representing the external input to the simulation.

5.2.2.1 Interface. The interface between the simulation and the knowledge
base is implemented through a Dynamically Linked Library (DLL). CLIPS is compiled
as a DLL, and Lisp accesses the CLIPS functions through a foreign-function call to the
CLIPS DLL. This essentially allows Lisp to internally have the functionality of CLIPS. On
SCIUS’s initialization, the knowledge base is loaded into CLIPS. Knowledge base queries
are accomplished by having SCIUS load the system state vector into CLIPS as a set of fact

assertions, then run the knowledge base, and finally retrieve any action fact assertions.

5.2.2.2 Simulatton Complications. The simulation was designed to be
non-trivial, and as such implements a variety of behaviors that differ from a standard
action-response model. First, some actions> do not cause responses in external objects
until after a delay period, while some actions do not cause responses in any objects at all.
Some objects enter “problem” states (based upon improper actions), and take an extended
period of time to recover after the improper action is remedied, while some objects “break”
and do not ever recover. Some objects have “backup” objects that are activated when a
primary object is disabled. Some symmetrical objects do not behave identically. Finally,
there are many cases where actions on a number of objects control changes of state in other
objects. The intent of the simulation complications is to make the simulation “non-tuned”

to exploration and induction®*, thus providing a more rigorous test for the SCIUS approach.

5.2.3 SCIUS Prototype Framework. The bulk of complexity of the SCIUS pro-
totype resides in the Knowledge Acquisition Module (KAM) and the control module. A
domain-dependent interface deals with conversions between the simulation state vector and
the knowledge base state vector, as well as the return conversion between the knowledge
base action facts and the GUI’s control inputs. Additionally, the control module is respon-

sible for the scenario exploration process, generating the exploration action inputs to the

“To tune the simulation for induction, actions would only affect a single state of a single object, and the
results would be immediate. Additionally, objects would never enter “sink node” states, and symmetrical
objects would behave identically.

73

simulation and categorizing the explored scenarios. The KAM contains the ID3 engine,
and generates the learned concepts from the explored scenarios to be stored in the expert
module. Additionally, the KAM structures the learned concepts into a baseline curriculum

to be stored in the tutor module.

5.2.4 Summary. The SCIUS prototype achieves a balance between being complex
enough to provide a meaningful research tool, and not being so complex as to involve
an extensive amount of development. The SCIUS prototype implements a non-trivial
knowledge base and simulation, and the interesting parts of the overall SCIUS architecture.
The next section will detail some of the results obtained during the development and testing

of the prototype.

5.8 Simulation Issues

Way (53) comments that simulation and GUI development constitutes the majority
of the development time for an ICAT system, and my experience with the prototype agrees
with this result. Because SCIUS allows for the use of pre-existing simulations, this cost
can be eliminated in some cases. Simulation authoring tools can also help minimize the
cost of developing interactive simulations. The following sections describe some of the key

issues in the design of simulations for the SCIUS architecture.

5.8.1 Interface. There are two key simulation interface issues for SCIUS: the
control interface, which allows SCIUS to control the simulation interactively, and the state

translation interface, which controls the format for the output of state vector information.

The simulation must be controllable by SCIUS to allow for simulation exploration
and demonstration of scenarios. This control can be implemented either through the GUI

or through direct object updates.

This process is shown in Figure 20. SCIUS outputs actions, in the form of a control
Object-Attribute-Value (OAV) triple. The interface module (which must be written by the
developer) converts the action OAV values to either control inputs that happen through
the GUI, or to direct object updates to the internal simulation objects. The first method

74

SCiUs
T T T P adiens
Intertace
Module
Control Inputs | | OAV Values

GuUI
GUI Updating
Simulation

EE:]:

Figure 20. Simulation Control Interface

is much cleaner, because SCIUS controls the simulation through the same interface as the
student. This eliminates any negative side-effects (described below) from SCIUS’s direct
control, and allows an easy method for demonstrating the actions for a particular strategy.
This method also allows the simulation to be controlled without knowledge of, or access
to, the internal simulation components. The second method (direct object updating) for
the control interface requires knowledge of and access to the internal simulation implemen-
tation. In this method, the OAV triples are used in code that directly updates the values
of internal simulation objects. These changes are reflected in the normal simulation/GUI
interface operation. This method may be problematic, however, because functions that

are called as a result of GUI inputs will not be called when objects are updated directly.

SCIUS’s operation is independent of the method chosen for programmatic simulation
control. SCIUS simply passes the action OAV triples to the interface module, which
implements the actions appropriately for the simulation. The interface module, however,

will have to be customized for a particular domain simulation.

The second aspect of the interface module’s operation is the conversion between
the simulation’s state vector representation, and a representation compatible with SCIUS.

SCIUS does not actually parse or otherwise process the raw state vector information, but

75

it must be able to store it in the scenario library. SCIUS simply stores the state vector
in whatever form is required for the simulation, in order to later load it back into the

simulation for exploration or training.

5.3.2 Ezxploration Combinatorics. An important issue in the exploration process
is the potential for combinatoric explosion in the number of explored states. The upper
bound on the number of states found during state exploration is given by s 3°7_, 4,5 < B,
where g is the number of explored generations, s is the number of nodes in the original
scenario trace, b is the branching factor for each node in a particular exploration session and
B is the upper bound on the branching factor, equal to the number of unique elements in the
control space. However, it is believed that the number of states discovered in practice will
be much lower than this because of two primary factors. First, the theoretical upper bound
on the number of states in the state-space is based only upon the number of possible values
for each attribute in the state vector. This purely combinatoric measure assumes that
all attributes are independent of each other (which gives maximum degrees of freedom).
However, attributes without dependencies are not truly part of the simulation. In a real
simulation, there will be many dependencies between attributes; these dependencies reduce
the potential size of the state space to something typically much less than the theoretical
upper bound.

A second limitation is the size of the action vector space. A human-controlled system
is not likely to have a huge number of control inputs, and these inputs are not likely to all
have a high degree of granularity. In the prototype simulation, there are approximately
100 possible singleton action vectors. Thus, the action vector space is relatively limited.
Sampling the action space may lead to duplicate actions. These duplicate actions may
cause the same state transition from a variety of different scenarios, limiting the number of
possible scenarios found. Additionally, it is often the case that many of the control inputs
are binary switches. A random sampling process that finds a switch as a control input has

a 50% chance of not changing the value of the switch, resulting in no state transition.

76

The following discussion presents the results of some exploration experiments run on
the prototype simulation. These results are not significant for the population of simulations

as a whole, but they do provide some insight into the operation of the exploration process.

1000 T T T T T T T

800 |- roxpert” +— _#"

800 |- N 4
o

700 | e i

600 -

SOO-V ”/ +

400 A

Unique States Found
N

300 [/«’

200

100

]

400 500 600 700 800 800 1000
States Explored

Figure 21. Expert Simulation Exploration

Figure 21 shows a plot of the number of simulation states explored along the expert
path against the number of unique simulation states found, along with the theoretical
limit of every explored state being unique. It is evident from this graph that the number
of unique states found does not increase as quickly as possible, and in fact reaches an

asymptotic value at about 120 states in the expert path.

It seems likely that the expert path will always be significantly less than the theo-
retical exploration limit because the number of correct actions at any given state (one) is
so much smaller than the number of possible actions that can be performed, limiting the

size of the expert path space.

Figure 22 shows the most simple exploration possible — exploring one generation
deep at a branching factor of one, against the theoretical upper bound on number of
unique states found. Here, the actual is almost equivalent to the upper bound, because

the state space is largely unexplored.

Figure 23 shows the actual versus theoretical number of states found for single gener-

ation large branching factor exploration. These graphs show that as the branching factor

[

60 80
Nodes in the Expert Path

Figure 22. 1 Generation, 1 Branch Exploration

increases, the actual number of unique states found becomes farther removed from the

theoretical limit.

Figure 24 shows the opposite type of exploration, deep with no branching. This type
of exploration would not normally be used, because it involves directly searching away
from the expert path, which would occur if a student successively performed the wrong
action for an extended period of time. These graphs are presented to show that depth
versus. breadth does not make a significant difference in the growth of scenarios found

during exploration.

Figure 25 shows the number of unique scenarios found in an exploration set-up that
is a mix of breadth and depth: two generations deep with a branching factor of five. Again,

this type of exploration grows at a much slower rate than the theoretical limit.

The graphs presented demonstrate a number of important issues. First, they show
that the prototype simulation is non-trivial; there are at least 2000 unique states reachable
in one step from the expert path. Second, they support the supposition that the exploration
does not expand at the theoretical combinatoric limit, because of the constraints mentioned
above. Although this does not prove that exploration in an arbitrary simulation will be
similarly limited, it supports the notion because the prototype simulation is not tuned for

ease of exploration.

78

Figure 23.

1200

1000 |

Unique States Found

“dgib10" —
Mg1b10" -

A 1

12000

60
Nodes in the Expert Path

(a)

100

120

10000

8000

6000

Unique States Found

4000

2000

"dg1b100" ~—
*tg1b100" —+-

Simulation Exploration With (a) 1 Generation, 10 Branch, (b) 1 Generation,

100 Branch

60
Nodes in the Expert Path

(b)

79

100

120

1200 T -

T T T

*dg10b1" ~—
"g10b1” ~- A

1000

800

600

Unigue States Found

400

200

0 L 1 1 1 L

60
Nodes in the Expert Path

(a)

12000 — —

L T T

*dg100b1" ~o—
"g100b1"™ == A

10000

8000

6000

Unique States Found

2000

Q e . 1 L 1

100 120

60
Nodes in the Expert Path

(b)

Figure 24. Simulation Exploration With (a) 10 Generation, 1 Branch, (b) 100 Generation,
1 Branch

80

4000 T T T T

3000 | el

2500 |- L |

2000

Unique States Found

1500

1000

500

0 20 40 60 80 100 120
N Nodss in the Expert Path

Figure 25. 2 Generation, 5 Branch Exploration

5.4 Knowledge Base Issues

Knowledge base development is fairly straightforward, following a standard knowl-
edge engineering methodology. Of interest to this research is the behavior of knowledge
bases in the SCIUS architecture, and the issues involved with interfacing an arbitrary

knowledge base to SCIUS.

5.4.1 Interface. The interface module between the knowledge base and SCIUS
has two primary functions: converting a simulation state vector to a form compatible with
the knowledge base, and converting an action from the knowledge base to an identified
OAV triple for use in SCIUS. The first task is fairly straightforward translation, and will
have already been accomplished if the simulation and knowledge base are pre-existing
components. It is worth noting, however, that .the knowledge base form of a simulation
state vector (a knowledge base state vector) is frequently going to be much smaller than
the simulation state vector. This is because the knowledge base state vector only includes
the elements of the simulation that are required for the knowledge base; many simulation
objects and attributes are “hidden” from the knowledge base. In the prototype, only 36

of the 206 state vector attributes are required for the knowledge base.

81

5.4.2 Timing. Timing is not addressed in the prototype, because of the efficiency
limitations of Lisp and the other pressing research issues. However, timing will be an issue
for a real-world implementation of the SCIUS architecture.

Simulation State Updates
| ' '
1 ©

'65_._

I
Action\ t
Knowledge Base Query
Induced Knowledge Base Query
- + ~
. lK‘ Consistency Check
| # | 1I

!

L Comparison
]
-

- | |

<\> Control

Figure 26. Ideal Timing

Figure 26 shows an ideal timing flow for a typical training cycle. The main trigger is
the simulation update (at t,). This triggers an expert knowledge base query, using the state
at %9, and a corresponding evaluation of the state using the induced knowledge base. It is
likely that the induced knowledge base query will be faster because the induced knowledge
base is completely flat, and “running” natively in the language used for SCIUS, whereas
the expert knowledge base is external. The result of the knowledge base query is compared
to the result of the induced knowledge base query for the purposes of consistency checking.
If the expert knowledge base and induced knowledge base are consistent, then the results
obtained by the knowledge base must be compared against the action (or inaction) of
the student. If the expert action and the student action conflict, then the simulation can
be halted for corrective feedback, depending upon the pedagogical strategy. Ideally, this
entire sequence occurs during one simulation cycle. However, it could be the case that the
action occurs too late in the cycle for the required activities to complete before the next

simulation cycle. This should not be a problem because, depending upon the pedagogical

82

strategy, the simulation will likely be restored to the state at which the student error

occurred.

The main timing constraint for SCIUS is that the three activities (knowledge base
query, induced knowledge base query, and consistency check) must be accomplished in less
than the time required for one simulation cycle. Without this constraint, the simulation
would be generating states faster than SCIUS could process them, and there would be no

means to clear the backlog of unprocessed states.

5.5 Induction Issues

The measure of success for the induction process is the accuracy and appropriateness
of the induced knowledge base. Inductive techniques are typically judged by the number
of examples that they can classify correctly in a given set of examples, after being trained
with a subset of those examples. The nature of the inductive process makes accuracy
and appropriateness a trade-off. If an inductive system is trained with the entire set of
examples, then it will develop completely accurate concepts®, but they will be specialized
to the example set and will not tend to be robust when applied against a new set of
examples. On the other hand, if the inductive system is trained on a small subset of the
examples, then the system may be more robust, but less accurate. Determining the ideal

point for this trade-off is an open issue in the field of machine learning.

It may seem that a training system should be 100% correct and complete. However,
in a non-trivial simulation it will be impossible (or at least infeasible) to enumerate all
the possible states®, so a training system can not be guaranteed to be 100% complete or
correct. However, some confidence can be gained that it will be unlikely for a concept to

incorrectly classify an example, if the training set is representative.

In the case of SCIUS, the knowledge base is 100% correct within the scope of its
design. Ideally, the induced knowledge base would be completely equivalent to the original

®This assumes there is no noise (incorrect examples), and that the examples are completely classifiable
with the features given. This is true for this research, but is not necessarily true for all inductive domains.

®Tt is possible to functionally cover all the possible states in some educational domains (such as addition),
so a tutoring system could be completely correct and complete in these domains. This is not generally true
of training domains.

83

knowledge base. However, this is an infeasible goal. The only way to guarantee that two
knowledge bases are equivalent is to enumerate all the possible inputs (infeasible), convert
them to simplified algebraic representations (infeasible), or copy the original knowledge
base (pointless). At best, we have to settle for some statistical confidence that it is unlikely
that the knowledge bases will give different answers. The induction process gives some
confidence that the learned concepts are statistically accurate, but the consistency checking
process in SCIUS (described in Chapter 4) ensures that an improperly classified scenario

will never be presented.

The following sections will present the results from induction experiments conducted
on the SCIUS prototype. The purpose of these experiments was to demonstrate the fea-
sibility of induction in this approach and to investigate the behavior of induction in a

non-trivial system.

100 T T T T
995 4
99 r -
985 | 4
g
]
5 98 | 4
8
<
&
g 975 | E
z
97 |) 4
96.5 |- 4
96 -4
95‘5 L 1 1 L] 1 1
10 20 70 80 90

0 40 50 60
Percent of Training Set Used for induction

Figure 27. Induction Accuracy

5.5.1 Number of Examples. Figure 27 shows a plot of the accuracy of the induced
knowledge base versus. the percentage of scenarios used for training. For these tests,
a random subset of the example set was used for induction, and the learned concepts
were compared for accuracy against the entire set of examples (training with 100% of the

example set always results in 100% accuracy). As can be seen in the graph, the accuracy of

84

the induced concepts quickly rises to a reasonable level as the number of training examples

is increased.

This graph indicates that the prototype domain is fairly well-structured; a relatively
small subset of the examples is representative of the entire set of examples. Compared to
random data, a simulation will impose a large degree of structure, making it more likely
that a relatively small representative subset can be found. Additionally, the action-based
exploration process finds scenarios that are clustered together in the state space, making
it easier to find a small representative sample. A state-based exploration process, on the
other hand, will find scenarios scattered around the state space. A random sample of
those scenarios will be less likely to be representative of the explored scenarios as a whole.
This structure to the scenarios found from action-based exploration supports the idea that
a representative set of training examples can be found without requiring an exhaustive

search.

5.5.2 Induction Behavior. The prototype knowledge base was designed at the
very beginning of this research effort, before most of the issues involving induction and
scenario exploration were uncovered. This was done to minimize any conscious or subcon-
scious bias that might have made the knowledge base tuned for induction. It was later
discovered that the knowledge base was not only not tuned for induction, it was not a
particularly well designed knowledge base either. However, the knowledge base was not
improved (corrected), because a sub-optimal knowledge base provides a more realistic and
interesting example of a knowledge base that SCIUS might encounter. The implications

of the knowledge base problems will be discussed below.

The induced rules have a varying degree of similarity to the original knowledge base
rules. The simpler the original rules were, the more likely the induced rules would be exact
copies. An example of an exact match was the “degauss” rule:

(defrule port-degauss

"Clear the port warp-coil field"

(port-coil state gaussed)

=>

(assert (action port-coil degauss activate))

85

This rule addresses a problem condition that occurs when a coil is brought up to
power without activating a coil boost. This type of state is found through exploration; it
occurs as the result of an operator error. It is interesting that this rule is matched exactly
because this condition can occur any time after the reactor is started. The examples found
during exploration are varied enough, however, to allow the induction process to filter out

any other potential precondition.

Some induced rules were very close to, but not exact copies of the knowledge base
rules. An example of this type of match was the “plasma injector stress” rule. The CLIPS
version of this rule was:

(defrule port-unfreeze

"Open up a stuck or frozen injector"

(port-injector state frozen | stressed) ;inj is frozen OR stressed
=>

(assert (action port-injector dilation 80))

In the simulation, the injectors become stressed if they operate at 100% for a period
of time. If the stressed condition is ignored for thirty simulation cycles, then they become
frozen. Either of these conditions can be cleared by reducing the injector level. The
induced rule was:

IF

(port-injector state stressed)
THEN

(action port-injector dilation 80)

This rule ignores the “frozen” condition because the exploration process never goes

deep enough to find a state where the “stressed” condition is ignored for thirty cycles.

Additionally, some oddities were uncovered in the way ID3 handles ranges. An

example of this is shown in the following rule:

(defrule shut-off-antimatter

"Deactivate antimatter if matter is shut off"
(mri level 0)

(ari level ?a-level)

(test (> 7a-level 0))

=>

(assert (action ari level 0)))

86

This rule simply states that if the matter-reactant injector (MRI) is turned off, then
the antimatter-reactant injector (ARI) must also be turned off. The induced rule obtained

was:

IF

(mri level 0)

(ari level >= 1.0)
THEN

(action ari level 0)

This rule is functionally the equivalent of the CLIPS rule, because the ARI can
only take integer values. Therefore (ari > 0) and (ari >= 1) are equivalent expressions.
From a pedagogical standpoint, it is likely that (ari > 0) is a better concept to teach,
because zero is easier to remember than some arbitrary integer. This example illustrates
the blindness of the induction process; to the computer these expressions are completely
equivalent because there is no knowledge outside mathematical knowledge with which to
compare them. It may be the case that rules such as these could be tweaked in a final

human expert evaluation of a real-world implementation of SCIUS.

A final example demonstrates a case where an induced rule seems more complex than
it needs to be. The following CLIPS rule:

(defrule starboard-injector-max

"Configure the injector for max power"

(phase max-warp)

(starboard-injector dilation 7d)

(test (< ?d 100))

=>

(assert (action starboard-injector dilation 100)))

This rule is a “configuration” rule that simply states that an injector should be fully

open for a maximum power configuration. The induced rule was:

IF

(order name max-warp)
(starboard-injector dilation < 95.0)
(pmtc power >= .25)

THEN

(action starboard-injector dilation 100)

This rule demonstrates another range oddity, as described above. In the simulation,

(starboard-injector dilation < 95.0) and (starboard-injector dilation < 100) are equivalent

87

expressions. The unusual aspect of the induced rule is the (pmtc power >= .25) term.
This term identifies the port main transfer conduit (PMTC) power as being greater than
or equal to .25. This would seem to be an irrelevant term, but in fact it highlights an

interesting aspect of the rule induction process.

The prototype knowledge base contains rules that deal with the case where a reactor
configuration is called for before the reactor has been started. For example, if the reactor
is shut down, and the order is given for cruise configuration, then rules will fire suggesting
actions to start the reactor. These “back-up” rules will always fire last, so even though
there is a rule with an action setting an injector to 100%, this action will be overwritten by a
back-up rule requiring the injectors to be set to 0% (for engine start-up). This combination
of rules is functionally correct, but reflects a bad knowledge-base design because facts are

overwritten by other rules.

A better design would have been to include a extra precondition in the configuration
rules such as (reactor-power > 0). This would ensure that the configuration rules did not
fire until the reactor was started. The knowledge base, however, is functionally correct, and
acts as if it had these preconditions in the configuration rules, because of the interactions
between different rules. This functional equivalence is evidenced in the induced rule. The
term (pmtc power >= .25) is essentially equivalent to (reactor-power > 0); the terms will
always occur together. Induction is blind to the symbolic meaning of the terms; both terms

contribute the same amount of information to separating positive and negative examples.

To further explore this phenomena, the induction process was run against a training
set of examples that did not involve any back-up rules to start the engine. In this case,

the induced rules were virtually identical to the original knowledge base.

Generally, the induced rule base was symbolically very close to the original rule
base. Some learned rules matched their original counterparts exactly, while other rules
were partially streamlined because of preconditions that were not required in the explored
simulation space. Some rules that were outside the simulation space were not learned at
all. Finally, some rules were sub-optimal in a pedagogical sense because of the blind choices

made by the induction process.

88

5.5.83 Bias. As previously discussed, the exploration process finds scenarios that
are representative of the scenario space that the operator is likely to encounter, and not
necessarily representative of the scenario space as a whole. This constraint on the ex-
ploration process provides an inductive bias that allows the induction process to discover
concepts that are more appropriate to the operator. However, within this constrained
scenario space, all scenarios are considered equally likely, because no other information is
available to determine likelihood. It may seem as if this is a shortfall, because some scenar-
ios are certainly much more likely than others. However, the operators are typically not
being trained to handle only the frequently occurring scenarios; the infrequent, anomalous
scenarios may be the most important for training. Treating the explored scenarios with
equal likelihood increases the chance that an infrequently occurring scenario will be dis-
covered. It also may be the case that the lack of frequency bias will allow the exploration
process to discover scenarios that were not anticipated by a human expert. Humans typi-
cally have a plethora of biases that allow them to effectively constrain large search spaces.
These biases are typically an advantage, but in some cases they blind humans to possible,
though unlikely outcomes. This has been the case with some Discovery-Based Learning
systems (25, 23), where the systems discovered concepts that the system designer did not
anticipate. The exploration and induction process in SCIUS acts as a type of discovery

process.

5.6 Limitations of the Model

It is recognized that the SCIUS architecture does not represent an all-encompassing
solution for intelligent training. Some training applications will require deeper knowledge
training, or optimal performance, and will not be able to benefit from the SCIUS approach.

This section will discuss some of the limitation of the SCIUS architecture.

5.6.1 Domain-Specific Knowledge Requirements. As previously discussed, part
of the emphasis for this research was to limit the domain-specific knowledge requirements
for a training system as much as possible. The following sections discuss the necessary

domain-specific knowledge requirements for the SCIUS architecture.

89

5.6.1.1 Interfaces. An interface must be constructed between SCIUS and
the knowledge base, and between SCIUS and the simulation. For the SCIUS to knowledge
base interface, knowledge about how to extract the action information from the output
of the knowledge base would be required. Additionally, knowledge about how to load the
knowledge base with state information (including the conversion from a simulation state
vector to knowledge base state vector) and information about how to run the knowledge
base would be necessary. For the SCIUS to simulation interface, knowledge about how to
control the simulation (loading, starting, stopping) would be required, as well as knowledge
about how to extract a simulation state vector from the simulation and convert it to a
representation that can be used by SCIUS. Finally, the simulation interface would require
knowledge about how to convert an action vector from the knowledge base to an equivalent

control input to the simulation.

5.6.1.2 Ezploration Knowledge. For exploration to work properly, three
specific pieces of knowledge would be required. First, a representation of the action space
would be required, so action-based exploration can sample this space. This information
should be readily available from the interface development step, however. Second, infor-
mation about delayed state change nodes (Section 4.4.2.1) would be required so watchdog
timers in the exploration process could be set accordingly. Finally, information about
any emergency states that are not caused by operator errors would be required, so the

exploration process could start at these nodes.

5.6.2 Shallow Knowledge. The most obvious disadvantage of the SCIUS ap-
proach (in terms of potential training effectiveness) is the use of shallow knowledge. SCIUS
converts a knowledge base (which may already be shallow knowledge) into a completely
flat stimulus-response representation. Shallow knowledge is typically not robust; it works
within its tightly constrained domain but breaks down quickly in a new situation. It is rea-
sonable to expect operators trained with shallow knowledge to exhibit some of the same

behavior.” However, economic constraints are forcing a trend towards using less skilled

"There is a significant difference between a human with X amount of knowledge and an expert system
with the same knowledge. The human has an entire common-sense background with which to apply that
knowledge.

90

operators with limited education. Shallow knowledge has the advantage that it can be
quickly communicated. For example, it takes much less time to train a person to drive an
automobile than to train a mechanic. Additionally, this research is not intended to be an
all-encompassing training solution. It is designed to provide basic “bootstrap” training,
involving bringing a novice to a basic level of competency after which deeper training can
be accomplished. One of the most expensive (and likely tedious) aspects of conventional
training is one-on-one practice with an expert watching a student. SCIUS addresses this
expensive, time-consuming training that must be accomplished before deeper training can

begin, if it is required.

5.6.3 Knowledge Base Paradigms. The main intent of this research was to
investigate methods for reducing the knowledge engineering requirements for intelligent
training systems. This was accomiplished by defining an architecture that had minimal
knowledge requirements, and was able to use pre-existing knowledge wherever possible. The
use of pre-existing knowledge is by necessity a secondary priority because of the essentially
limitless potential structures of pre-existing knowledge. I attempted to address the most
basic form of operator expert knowledge, namely that of a “memoryless” knowledge base
that operated only on the current state without any memory of states that have occurred
in the past. For example, a power plant operator shuts down a pump because it has just
entered a red region on the pressure gauge (memoryless), or he shuts it down because it has
been in the yellow region on the pressure gauge for several days (memory). A significant
portion of the SCIUS architecture is dependent upon this memoryless assumption; the
model essentially breaks down without it. Knowledge base memory would be particularly

problematic in any architecture that attempts to use pre-existing knowledge, however.

The main task in using a knowledge base externally is learning why an expert does
something at a particular state. In SCIUS, this is accomplished by induction, which works
because all the information needed to determine an action is present in one state. However,
with knowledge base memory, the triggering states may be an indeterminate number of
states in the past. Thus, the information needed to determine the cause of the action

is buried somewhere in the stream of states going all the way back to the starting state.

91

Theoretically, induction could still work in this environment, but it would be horribly

inefficient.

A second problematic paradigm for a pre-existing knowledge base is the “automated
expert” knowledge base. This type of knowledge base is designed to act as a sole operator,
and not to support a human operator. This type of knowledge base is less complex than
an operator support knowledge base, because it does not need to encompass all the human
errors and inefficiencies. If action A is called for at state §, then the knowledge base
may not need information about what to do when action B is performed at state S. The
automated-knowledge base may only have knowledge about what to do when everything
happens perfectly, so it would not have the knowledge required for adequate induction and

scenario exploration for human training.

5.7 Summary

The difficult aspects of the SCIUS architecture were implemented with a non-trivial
domain knowledge base and simulation. The performance of the prototype was examined
with respect to the growth of simulation exploration, and it was confirmed that the number
of unique scenarios found during exploration grows at a much smaller rate than the theo-
retical maximum. The performance of the inductive process was also examined; induction
provided reasonable accuracy when trained on a subset of a large set of examples. The

induced rules were generally appropriate and close to the original rules.

There are a number of implementation issues to consider for a real-world implemen-
tation of SCIUS. Timing is a key issue because two types of knowledge base consultations
(actual and induced) must occur within the span of a single simulation cycle. With respect
to the task of interfacing the domain knowledge components to SCIUS, the basic task is
simply one of translation. The knowledge base output must be translated to control in-
puts, and the simulation state information must be translated to a refined representation

compatible with the knowledge base.

92

VI. Conclusions & Recommendations
6.1 Summary

This research has presented an architecture that requires less knowledge for an intel-
ligent training system than other approaches. This is accomplished through the establish-
ment of the minimal knowledge requirements for a training system: a simulation and (at
least) shallow knowledge base. The knowledge base provides the basic core knowledge that
encompasses the operator’s job, but no context. The simulation provides context with-
out knowledge. Together, the interaction of these two components provides knowledge
in context, and provides knowledge that is more powerful than either of the components

alone.

These knowledge components are used at the interface level only, allowing the internal
representation of the components to take any form that meets the interface requirements.
This provides enormous flexibility for the implementation of these components, because
the plethora of tools available can be used, freeing the system designer from a particular
representation. In addition to easing the implementation, this interface-level approach
allows the system to take advantage of pre-existing knowledge components, as long as they

meet the interface requirements.

A knowledge base and simulation alone are not sufficient for intelligent training. My
approach develops the remaining knowledge required for training through two primary
tasks: simulation scenario exploration and concept extraction through machine learning
induction. Simulation scenario exploration searches the appropriate state space that the
operator is likely to encounter, and does not search the entire state space. Concept ex-
traction uses the scenarios found during scenario exploration as a basis for induction.
Induction determines the relevant features for a particular concept that distinguish it from
other concepts. This is critical information for training the student; without it, the student
simply learns stimulus-response behavior — he has no conception of “why” a particular ac-
tion is performed. The learned concepts are hierarchically organized by complexity and

preconditions to provide a baseline curriculum for presentation to the student.

93

A prototype implementation of the core of the architecture was developed in Common
Lisp, as a proof-of-concept. The prototype domain was a fictional antimatter reactor, and
involved many of the typical monitoring/controlling activities of a CDS operator. The
prototype was non-trivial; the simulation involved state vectors of over 100 attributes
and numerous simulation complications, and the knowledge base implemented 55 rules,
with ‘a variety of different rule configurations and corhplexities. The performance of the
prototype met expectations. The growth of the simulation exploration was far less than
the theoretical upper bound, and the exploration process was able to find a wide variety of
scenarios. The induction process was able to discover appropriate rules with a high success

rate against unseen examples.

This approach is significantly different from other approaches in the literature. Al-
though authoring systems have been developed, none have been as aggressive with reducing
knowledge requirements as my approach. Most authoring systems are simply a template
for a particular training approach, requiring a significant knowledge engineering effort from
an expert course designer to encode the domain knowledge into the authoring system rep-
resentation. Additionally, no other research has addressed the issue of using pre-existing

knowledge, and very few systems have addressed the use of machine learning in an ITS.

The architecture represents the potential for a significant savings over other ap-
proaches for developing intelligent training systems. The architecture allows the oppor-
tunistic use of pre-existing knowledge, if available, or minimal requirements for knowledge
engineering in comparison to other approaches. The difficult aspects of the architecture

have been demonstrated in a non-trivial domain, and performed as expected.

6.2 Objectives

The research objectives presented in Chapter 1 were met by this research effort. The

discussion below briefly describes how each of these objectives were satisfied.

Develop an architecture for a training system that uses only a simulation and knowl-

edge base for domain knowledge.

94

The architecture presented in Chapter 3 uses an automated scenario exploration
technique and rule induction (described in Chapter 4) to discover knowledge required for
a training model described in Chapter 2. The results from the prototype (described in
Chapter 5) support the feasibility of this approach for acquiring domain knowledge from

the interface to a simulation and knowledge base.
Develop an approach to automatically generate scenarios for training.

The action-based exploration approach (described in Chapter 4) guarantees legal
scenario generation. This approach finds a wide variety of scenarios, clustered around an
expert path through the simulation state space. These scenarios will tend to be more
representative of the scenarios the operator is likely to encounter than scenarios that are

far removed from the expert path.
Develop a technique to isolate the key feature knowledge from a scenario.

Given a representative set of scenarios, the rule induction process (described in Chap-
ter 4) isolates the key features in the scenarios that lead to a particular action. The proto-
type induction results were promising, with a large number of rules very closely matching
their original counterparts. However, some induced rules were correct, but somewhat
inappropriate for training, highlighting one of the disadvantages of domain-independent

induction.

Determine the knowledge and interface requirements for a simulation and knowledge

base in a generic architecture.

The interface to the simulation and knowledge base is described in Chapter 3. Ba-
sically, an operator-expert knowledge base inputs a state of the world and outputs a rec-
ommended action. A simulation takes an action (set of control inputs), and possibly
a simulation control input, then generates a state of the world. This interface is fairly
simple, supporting the viability of this interface-level approach. These interfaces require

domain specific knowledge, however; this limitation is discussed in Section 5.6.1.

95

6.3 Contributions

6.3.1 Authoring Systems. SCIUS represents a unique approach to an authoring
system, one that can theoretically operate without a course author; the entire domain
knowledge can be engineered without knowledge of the fact that it is going to be used
for a training system. Additionally, the use of the knowledge components at the interface
level represents a unique approach because it allows almost complete freedom for the

implementation of these components.

6.3.2 (Generic Training System Model. This research presented a model for
a generic training system that integrates the necessary domain-specific components of a
training system. A model of an interactive time—based simulation was developed and inte-
grated with a model of an operator knowledge base. The interfaces for these components

to the generic system were specified and demonstrated in a prototype system.

6.3.3 Automatic Knowledge Acquisition. Two techniques for automatic acquisi-
tion of domain-specific training knowledge were developed. A scenario exploration process
was developed that explores the scenario space closer to the expert path, and ignores the
space far removed from the expert path, while guaranteeing that only legal scenarios will
be generated. This should tend to produce states that are more representative of states
the operator is likely to encounter. Additionally, the exploration process discovers a wide
variety of scenarios that can be used as training and testing examples. In the conventional
approach, scenarios have to be developed by hand. In this research, inductive learning was
used to discover the important features that lead to actions for particular scenarios. This
critical information is required for effective training, because it tells the student “why,”
not just just “what” to do. A generic baseline curriculum extraction technique was also

developed.

6.3.4 Reverse Engineering of Knowledge Bases. As part of the effort to under-
stand the knowledge acquisition process, some interesting aspects of the induction process
were discovered that may have application to interface-level reverse-engineering of knowl-

edge bases. If an appropriate set of input/output combinations of a knowledge base can be

96

generated or obtained, it may be possible to reverse-engineer the knowledge base strictly
from interface-level behavior. This reverse engineering would obtain a shallow representa-
tion of the knowledge base, but that may be quite useful if no other internal representation
is available. This may become more important in the near future as older knowledge bases
that may be compiled, or run on obsolete shells, become inaccessible. Reverse-engineering
may be the only method to recover knowledge that would be otherwise lost. Additionally,
the nature of the inductive process causes thé induced knowledge base to be partially veri-
fied; induction often ignores rules that have syntactic errors because they do not contribute
to the knowledge base’s behavior. This may have application to the software engineering
field as well. Both these approaches depend upon having some means of constraining the
possible input space for the knowledge base. In SCIUS, this is obtained by the scenario
exploration process, but in some other application the constrained input space could be

obtained from historical real-world cases.

6.4 Recommendations for Future Work

The following section discusses some of the possible extensions to this work. This
research is a basic foundation effort, intended to explore the feasibility of a new approach.
The following tasks would further support the basic research approach, or explore related

interesting areas.

6.4.1 Interactive Simulations. The development of an interactive training simu-
lation is probably the most labor-intensive aspect of any intelligent training system. Al-
though non-interactive simulations are well-researched, very little research has been con-
ducted with respect to the unique challenges of building interactive simulations. Interactive
simulations basically provide an added level of complexity on top of non-interactive sim-

ulations, because issues such as timing, user-interfaces, and psychological fidelity must be

addressed.

Research that provided techniques for making the development of interactive sim-
‘ulations easier would have a extremely broad application. Virtually any computer-based

training system (SCIUS approach or not) would benefit, as well as many educational do-

97

mains that use micro-worlds and other types of discovery-based educational approaches.
Additionally, psychology, cognitive science and human-factors research efforts could benefit

from improvements in interactive simulation construction techniques.

6.4.2 Induction Tuning. For this research, ID3 was not modified, except for
a minor change that made ID3 prefer nominal features over numerical features, given
that they provide the same information. There are a number of additional changes that
could be made to ID3 to make it more appropriate for inducing concepts that will be
taught to humans, based upon standard human-factors principles, which would be domain-
independent. For example, numerical concepts involving zero could be preferred over
concepts involving some non-zero value. Additionally, some more advanced modifications
could be investigated, such as the idea that if one feature can be used in a large number
of learned concepts, then that feature is preferred over an arbitrary scattering of different
features in the learned concepts. Furthermore, it may be the case that multiple nominal
features are preferred over a single numerical feature. The information-theoretic measure in
ID3 could be modified to encompass this idea as well. Additionally, constructive induction
could be used to allow for the construction of new feature that aren’t explicitly represented
in an action (such as the exclusive OR of two features). This may allow for more compact
concepts that are better suited for training. Finally, an alternative approach is to allow
for post-induction tuning by a human course designer. This could be as simple as allowing
ID3 to present a number of alternative concepts and allowing the course designer to pick

the most appropriate.

6.4.3 Real-world Testing. As discussed in Chapter 5, a fictional domain was
chosen for the prototype domaﬁn to provide expediency and flexibility. An investigation
of this approach in a typical real world domain could provide additional support as to the
appropriateness and generality of this approach. Additionally, an in-depth investigation of
the attributes of a wide number of operator training domains would also test the generality

of the SCIUS approach.

Additional testing could be accomplished by investigating the efficacy of the training

model used in SCIUS in a real-world application. This is really an education research task,

98

but it would provide valuable support with respect to the appropriateness of the SCIUS

training model.

6.4.4 Complete ITS Development. As described in Chapter 5, the prototype
implements the knowledge acquisition components of SCIUS, and develops the knowledge
required to use a standard training model for presentation. An implementation of a com-
plete training system, covering the span from knowledge acquisition to final training, could
provide a valuable insight as to the presentation issues involved in the SCIUS approach.
Because of the magnitude of this task, a smaller domain could be used, or pre-existing
knowledge components could be used if they were available. Additionally, the complete
prototype could be implemented in an efficient language, allowing the timing and system

efficiency issues to be more fully explored.

6.5 QOwverall Conclusions

This research has demonstrated that intelligent training is possible with a smaller
requirement for knowledge engineering than other approaches. The opportunistic use of
pre-existing knowledge, and minimal requirements for knowledge can potentially represent
huge savings in the cost of developing and maintaining a complete training system. The
approach used in SCIUS is heavily weighted towards economic savings; this approach is
not likely to be desirable for all training domains. However, it may represent the only

alternative for cost-constrained course designers.

99

Appendiz A. Definitions

This appendix formally defines the terms used in the body of the dissertation. Note

that some of these terms may be slightly different from their standard English definitions.

A.1

Simaulation

For the purposes of this research, a simulation is a model of a Complex, Dynamic

System (CDS), which a human operator controls.

A.2

Object: A simulation object is a representation of some real-world object that is
being simulated. Simulation objects may be ezternal (visible to the student) or

internal (not visible to the student.)

Attribute: A simulation attribute is a value representing a single characteristic of

one object, such as pressure or temperature.

State: A simulation state is a vector consisting of all the attribute of all the objects
(internal and external) in the simulation at a particular time. The terms “state” and

“state vector” are interchangeable.

Simulation State Space: The state space of the simulation is the space of all

possible state vectors.
Control Vector: A control vector is a set of control inputs to the simulation.

Control Space: The control space is the set of all possible control vectors (including

the null control vector).

Knowledge Base

Knowledge Base State Vector (KBSV): A KBSV is a subset (most likely a
proper subset) of a state vector, representing the information required for the knowl-
edge base. Internal object attributes are not included in the KBSV, and some external

object attributes may not be included as well.

Action: An action is a recommended control vector for a particular state.

100

Appendiz B. Prototype Algorithms

This appendix presents a description of the algorithms implemented in the SCIUS
prototype. The basic techniques for these processes are described in Chapters 4 and 5; the
following description represents a specific implementation-level algorithm. Note that the
techniques described below are not necessarily the most desirable method for implementing
the basic algorithm. Some implementation level decisions were controlled by resource

(memory) limitations.

B.1 Scenario Ezploration

There are two basic exploration functions in the Lisp code: explore9, which imple-
ments expert path exploration, and poke~-it, which implements expert path deviations.
Normally, this functionality would be encapsulated into one function, but it was separated
in this case for resource and testing purposes. These functions use a CLOS scenario object,

which is simply a scenario state vector and an associated action (or nil).

The expert path exploration function takes an input of a “seed” scenario and outputs

a list of scenarios found along the expert path. The algorithm is as follows:

1. Save the seed scenario to a file.
2. Load the simulation with the seed scenario.

3. Run CLIPS to find a recommended action. This is accomplished through passing the
state vector to CLIPS as a list of facts (through the DLL interface), running CLIPS

and getting a returned list of facts that contains action facts.

4. Implement the action through the simulation user interface (takes the scenario to a

new state).
5. Run CLIPS to find a recommended action.
6. Save the new state and action to a file (optionally skip duplicates)

7. Loop to step number 4

101

The result of this process is a list of scenario objects. This process runs for a pre-
defined number of steps. The expert path growth test described in Chapter 5 simply
consisted of running the process for various numbers of steps (1-2000) and counting the

number of unique scenarios found.

The algorithm for exploring away from the expert path works in a similar manner.
The input is a list of scenarios and the output is a list of scenarios found by sampling the
operator action space (the set of all possible control actions) for a pre-defined depth and

branching factor. The algorithm is as follows:

1. Iterate over input scenarios:
2. Iterate over depth:
3. Iterate over branching factor:

4. Implement a random action selected from the action space through the simulation

user interface, taking the scenario to a new state.

5. Find the action required for the new state by performing a CLIPS consultation. This

is not required for exploration, but will be required for induction.

6. Build a scenario object (state and action) and save it to a file. The object consists

of a state and its associated action.
7. Loop through step 3 for the number of the branching factor for a particular scenario.

8. Loop through step 2, performing the branching factor number of branches for each

scenario found in the step 6.
9. Loop through the scenarios in the original input set, performing the previous steps.

Basically, this process branches from each original scenario by the branching factor
number, then recursively branches from the discovered scenario for the depth. This process
is essentially a breadth-first search, The scenario exploration tests described in Chapter 5
involved performing this process for different branching factors and depths, and examining
the number of unique scenarios found. One obvious extension to this algorithm would be

to explore an additional step determined by the action found in step 5; this would be the

102

first “recovery” step. This would further enforce the appropriateness of the scenarios found

during this process. This was not implemented in the research code, however.

B.2 Induction

This research used ID3 as an induction engine, so only the interface to ID3 was
implemented. The interface to ID3 is quite simple; the input is a list of scenarios and the
output is a list of concept objects. A concept object is a list of bound (or range-bound)

attributes and an associated control input. The ID3 interface algorithm is as follows:

1. Generate a list of all the unique control inputs in all the actions in the training set

of scenarios.
2. Tterate over each unique control input:

3. Temporarily label the examples in the training set. If they contain the control input,

they are positive, otherwise negative.

4. Translate the scenario state vectors to an ID3 compatible format. One vector is one

example.
5. Run ID3, getting a decision tree.

6. Traverse the decision tree paths to positive nodes, extracting the positive example

concepts (disjunctive list of conjuncts).

7. Generate a concept object that consists of the induced concept from the previous

step and the associated action.
8. Loop through step 2.

This process results in a list of concepts that can be treated as a set of flat rules.
The accuracy tests described in Chapter 5 involved using a set of 1000 example scenarios
and running ID3 over various subsets of this set. The resulting induced rules were then

checked for accuracy over the entire set.

B.3 Code Availability

The Lisp code used in this research is available at

103

http://www.afit.af.mil/Schools/EN/ENG/Labs/AI/Research/its.html.

This code is made available primarily for instructional purposes; it is not robust,
demonstration type code. The algorithms described above should be relatively easy to
implement in virtually any language. The Lisp code should be treated as one possible

implementation. Instructions for using the code are included with the Lisp source.

104

10.

11.

12.

13.

14.

15.

16.

17.

Bibliography

. Anderson, John R. The Architecture of Cognition. Harvard University Press, Cam-

bridge, MA, 1983.

. Anderson, John R. “The Expert Module.” Intelligent Tutoring Systems Lawrence

Erlbaum Associates, 1988.

. Anderson, John R., et al. “Intelligent Tutoring Systems,” Science, 228:456—462

(1985).

Biegel, John E. “An Intelligent Simulation Training System.” Proceedings of the
3rd Annual Workshop on Space Operations, Automation and Robotics (SOAR ’89),
Johnson Space Center, Houston, Texas. 579-584. 1989.

. Brown, J.S., et al. “DEBUGGY:: Diagnosis of errors in basic mathematical skills..”

Intelligent Tutoring Systems Harcourt Brace Jovanovich, Academic Press, 1982.

. Brown, J.S., et al. Intelligent Tutoring Systems, chapter SOPHIE I, IT and ITI. Har-

court Brace Jovanovich, Academic Press, 1982.

. Carbonell, J.R. Mized-initiative Man-computer Instructional Dialogues. Technical

Report, Bolt Beranak and Newman, 1970.

. Clancey, William J. Knowledge-based Tutoring. The MIT Press, 1987.
. Clancey, William J. “Tutoring Rules for Guiding a Case Method Dialogue.” Intelligent

Tutoring Systems Lawrence Erlbaum Associates, 1988.

Cohen, Daniel I. A. Introduction to Computer Theory. John Wiley& Sons, Inc., New
York, 1991.

Crossman, E.R. “A Theory of the Acquisition of Speed-Skill,” Ergonomics, 2:153-166
(1959).

Derry, Sharon J. and Susanne P. Lajoie. “A Middle Camp for (Un)Intelligent Com-
puting.” Computers as Cognitive Tools Lawrence Erlbaum Associates, 1993.

Elsom-Cook, Mark. “Guided Discovery Tutoring.” Guided Discovery Tutoring — A
Framework for ICAI Research 1, Paul Chapman Publishing Ltd, 1990.

Farr, Marshall J. and Joseph Psotka. “A Themeatic Introduction.” Intelligent In-
struction by Computer: Theory and Practice edited by Marshall J. Farr and Joseph
Psotka, Washington:Taylor & Francis, 1992.

Feigenbaum, E.A. “Themes and Case Studie of Knowledge Engineering.” Ezpert Sys-
tems in the Micro-Electronic Age edited by D. Mitchie, Edinburgh University Press,
Edinburgh, Scotland, 1975.

Fink, Pamela. “The Role of Domain Knowledge in the Design of an Intelligent Tu-
toring System.” Intelligent Tutoring Systems — Evolutions in Design edited by H.L.
Burns, et al., Hillsdale, NJ:Erlbaum, 1990.

Gagne, R.M. The Conditions of Learning and the Theory of Instruction. New York:
CBS College Publishing, 1985.

105

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.
33.

34.

35.

Gilbert, T.F. “On the Relevance of Laboratory Investigation of Learning to Self-
Instructional Programming.” Teaching machines and programmed instruction 478,
National Education Association, Washington, D.C., 1960.

Gonzalex, Avelino J. and Douglas D. Dankel. The Engineering of Knowledge-Based
Systems. Prentice-Hall:Englewood Cliffs, NJ, 1993.

Hergenhahn, B.R. An Introduction to Theories of Learning. Englewood Cliffs, NJ:
Prentice Hall, 1988.

Hollan, J.D., et al. “STEAMER: An Interactive Inspectable Simulation-Based Train-
ing System,” AI Magazine, 5(2):15-27 (1984).

Jung, Namho and Taha Sidani. “Tutoring in a Generic Intelligent Simulation Training
System,” Computers and Industrial Engineering, 23(1-4):373-375 (1986).

Kilpatrick, F.A. An Investigation of Discovery-Based Learning in the Route-Planning
Domain. MS thesis, Air Force Institute of Technology, 1992.

Klahr, David, et al., editors. Production System Models of Learning and Development.
MIT Press, Cambridge, Massachusets, 1987.

Lenat, Douglas B. “EURISKO: A Program that Learns New Heuristics and Domain
Concepts,” Artificial Intelligence, 21:61-98 (1983).

Lu, Rugian, et al. “On Automatic Generation of Intelligent Tutoring Systems.” Pro-
ceedings of the 1995 Artificial Intelligence in Education Conference. 67-74. 1995.

Miller, M.D. “Applying Component Design Theory to the Design of Coursework.”
Instructional Designs for Microcomputer Coursework edited by D.H. Jonassen, Hills-
dale, NJ: Lawrence Erlbaum, 1988.

Morrison, John E. Training for Performance — Principles of Applied Human Learning.
John Wiley& Sons, New York, 1991.

Orey, Michael, et al. “Development Efficiency and Effectiveness of Alternative Plat-
forms for Intelligent Tutoring.” Proceedings of the 1993 Artificial Intelligence in Ed-
ucation Conference. 1993.

Papert, Seymour. “Microworlds: Transforming Education.” Artificial Intelligence and
Education 1, Ablex Publishing, 1987.

Patrick, John. Training: Practice & Research. Academic Press, London, 1992.
Quinlan, J.R. “Induction of Decision Trees,” Machine Learning, 1:81-106 (1986).

Rasmussen, Jens. Information Processing and Human-Machine Interaction. Elsevier
Science Publishing Co., New York, 1986.

Regian, J. Wesley. “Representing and Teaching High Performance Tasks Within In-
telligent Tutoring Systems.” Intelligent Tutoring Systems Hillsdale, NJ: Lawrence
Erlbaum Associates, Inc, 1991.

Reisner, B.V., et al. “Dynamic Student Modelling in an Intelligent Tutor for LISP
Programming.” Proceedings of the Ninth International Joint Conference on Artificial
Intelligence. 1985.

106

36.

37.

38.

39.

40.

41.

42,

43.

44.

45.

46.
47.
48.

49.

50.

51.

52.

53.

R.J.DeJong. “The Effects of Increasing Skill on Cycle-Time and Its Consequences for
Time Standards,” Ergonomics, 1:51-60 (1957).

Schaefer, B.A, et al. “Knowledge-Based Intelligent Tutoring for Spacecraft Opera-
tions.” Proceedings of the Contributed Sessions 1991 Conference on Intelligent Com-
puter Aided Training. 1991.

Schmidt, Richard A. and Robert A. Bjork. “New Conceptualizations of Practice:
Common Principles in Three Paradigms Suggest New Concepts for Training,” Psy-
chological Science, 3-4:207-217 (1992).

Shannon, Robert E. Systems Simulation — The Art and Science. Prentice-Hall, Inc.,
NJ, 1975.

Shiffrin, R.M. and W. Schneider. “Controlled and Automatic Human Information

Processing: II. Perceptual Learning, Automatic Attending and a General Theory,”
Psychological Review, 94:127-190 (1977).

Shortliffe, E.H. Computer-based Medical Consultations: MYCIN. American Elsevier,
1976.

Shute, Valerie J. Indwidual Differences In Learning From an Intelligent Discovery
World: Smithtown. Technical Report AFHRL-TP-89-57, Manpower and Personnel
Division, Brooks Air Force Base, 1990.

Shute, Valerie J. and Josepf Psotka. Intelligent Tutoring Systems: Past, Present, Fu-
ture. Technical Report AL/HR-TP-1994-0005, USAF, Armstrong Laboratory, 1994.

Shute, V.J., et al. “Modeling Practice, Performance, and Learning.” Simulation-Based
Ezperiential Learning edited by D.M. Towne, et al., 133-145, Berlin:Springer-Verlag,
1992.

Sime, Julie-Ann and R.R. Leitch. “A Specification Methodology for Intelligent Train-
ing Systems,” Computers in Education, 20:73-80 (1993).

Skinner, B.F. Science and Human Behavior. New York: Macmillan, 1953.
Skinner, B.F. “Teaching Machines,” Science, 128:969-977 (1958).

Sternback, Rick and Michael Okuda. Star Trek: The Next Generation Technical
Manual. Pocket Books, New York, New York, 1991.

Stevens, A., et al. “Misconceptions is Students’ Understanding.” Intelligent Tutoring
Systems Lawrence Erlbaum Associates, 1988.

Towne, D.M. and A. Munro. “Two approaches to simulation composition for train-
ing.” Intelligent Instruction by Computer: Theory and Practice 105-125, Washington,
DC:Taylor and Francis, 1992.

Truszkowski, Walter F. Intelligent Tutoring in the Spacecraft Command/Control En-
vironment. Technical Report N89-19855, NASA, 1989.

VanLehn, Kurt. “Student Modeling.” Intelligent Tutoring Systems Lawrence Erlbaum
Associates, 1988.

Way, Robert D. “Intelligent Computer-Aided Training Authoring Environment.” Pro-
ceedings of rhe Dual-Use Space Technology Transfer Conference. 1994.

107

54. Wenger, Etienne. Artificial Intelligence and Tutoring Systems. Los Altos, California:
Morgan Kaufmann Publishers, Inc, 1987.

55. Woolf, Beverly, et al. “Teaching a Complex Industrial Process.” Artificial Intelligence
and Education 1, Ablex Publishing, 1987.

56. Yazdani, Masoud. “Intelligent Tutoring Systems: An Overview.” Artificial Intelli-
gence and FEducation 1, Ablex Publishing, 1987.

108

Vita

Captain Freeman A. Kilpatrick Jr. wnsinssivsitiosiimgrtnwasensucp oy
haeRUSES. He graduated from Parkway High School, Bossier City, Louisiana in 1983.
Following high school, he attended Texas A&M University, College Statibn, Texas, gradu-
ating in 1987 with a Bachelor of Science degree in Electrical Engineering and an Air Force
commission. After commissioning, his first assignment was to the Space Surveillance and
Tracking Systern Program Office at Space Systems Division, Los Angeles Air Force Base.
During this assignment, he obtained a Mastér of Science degree in Systerns Management
from the University of Southern California, graduating in January 1991. He entered the

Air Force Institute of Technology in June 1991, obtaining a Master of Science degree in
Computer Engineering in 1992.

109

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden. to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
March 1996

Ph.D. Dissertation

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

dural Knowledge

A Generic Intelligent Architecture for Computer-Aided Training of Proce-

6. AUTHOR(S)
Freeman A. Kilpatrick Jr., Capt, USAF

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Department of Electrical and Computer Engineering,
Air Force Institute of Technology,

Wright-Patterson Air Force Base, Ohio 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/DS/ENG/96-02

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
LtCol Nancy Crowley
Satellite Control and Simulation Division
PL/VTQ
Air Force Phillips Laboratory
Kirtland Air Force Base, New Mexico 87117

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release, distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

knowledge acquisition techniques.

Intelligent Tutoring System (ITS) development is a knowledge-intensive task, suffering from the same knowledge
acquisition bottleneck that plagues most Artificial Intelligence (AI) systems. This research presents an architec-
ture that requires knowledge only in the form of a shallow knowledge base and a simulation to produce a training
system. The knowledge base provides the basic procedural knowledge while the simulation provides context. The
remainder of the knowledge required for training is learned through the interaction of these components in a
state-space scenario exploration process and inductive machine learning. These knowledge components are used
only at the interface level, allowing the internal representation to take any form that meets the interface require-
ments. A prototype of this architecture is implemented as a proof-of-concept to illustrate the viability of the key

14. SUBJECT TERMS

telligent training

intelligent tutoring systems, machine learning, induction,

knowledge acquisition, in-

15. NUMBER OF PAGES
122

16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

UNCLASSIFIED UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 739-18
298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet

optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date
including day, month, and year, if available (e.g. 1
Jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered.
State whether reportisinterim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun 87 -30 Jun 88).

Block 4. Title and Subtitle. Atitle istaken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Block 5. Funding Numbers. Toinclude contract
and grant numbers; may include program
element number(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C - Contract PR - Project
G - Grant TA - Task
PE - Program WU - Work Unit

Element Accession No.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s).

Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unigue alphanumeric report
number(s) assigned by the organization
performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s)
and Address(es). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11. Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans. of...; Tobe
published in.... When a reportis revised, include
a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, "Distribution
Statements on Technical
Documents.”

DOE - See authorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leaveblank.

Block 12b. Distribution Code.

DOD - Leaveblank.

DOE - Enter DOE distribution categories
from the Standard Distribution for
Unclassified Scientific and Technical
Reports.

NASA - Leave blank.

NTIS - Leaveblank.

Block 13. Abstract. include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contains classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL {unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

*1).8.GPQ:1993-0-336-043

Standard Form 298 Back (Rev. 2-89)

